
AD-A144 271 C31 (COMMAND CONTROL COMMUNICATIONS AND INTELLIGENCE) 1/2
INFORMATION SYSTEMS..(U) INSTITUTE FOR DEFENSE ANALYSES
ALEXANDRIA YA T C BARTEE ET AL. APR 84 IDA P-i774F

ENIIEDIII II
IIIIIIIIIIII II
EIIIIIIIIIIIII
EIIIEIIEEIIEI
IIIIIIIIIIIIIIlfflfflf
lllllllllllEEll

1.0.- 1" l.--. - -

.*19

AA
liii i* 12.

1.25 111.4 1 .

IllU '----ll-

MICROCOPY RESOLUTION TEST CHART

NATIO4AL BUREAU OF STANDARDS-1963-A

.-

*
i~

o
. - .

.7 -. OP of 50 09 8

IDA PAPER P-1774

C3 I INFORMATION SYSTEMS

INTERNETWORK STUDY

T. C. Bartee
O. P. Buneman
J. M. McQuillan

S. T. Walker

April 1984 ,°

i l Prepared for

Assistant Secretary of Defense
(Communications, Command, Control and Intelligence)

DTIC
ELCT

AUG 14194.
Approved for public relasol

Distribution Unlimited D

INSTITUTE FOR DEFENSE ANALYSES

84 08 13 001 IDA Log No. HO 84-28 9

The work repiflu In t iesuud m uns~dctd udur mhthc
MBA US 73 C MI for the Dkpuu of Dli.. The Iului
of tIs IDA Pape dmead iIia .d~su by One DeperMe
df Illbug my sMud the nuh.Ss I* @me d es rebuNl- tn
dbMi puftid #0 th g ae..

Aproe far puhk nb; I I1aold

This pipw hi bee rvbed by MA le asSur tht Umb high
bdodsf of thmughueai. ibjidu,1, and sened elm

metheddosgY MW that the assludw sdim hem the molbedeig.
IDA di. not hemme, uosesal @Mu I the mbolm or rems-

medatlea that It may onti.

UNCLASSIFIED
SEUIYCLASSIFICATION Of THIS PAGE gWW 006 Wm

REPORT DOCUMENTATION PAGE _____________________

1REPORT NUMBER IOW ACCESSION NO. 3REMCIPIENT'S CATALOG NUMUSER

'S. TITL.E (a" &"-batfo OFai REPORT a PERIOD COVERED

C 3I Infonnation systems internetwork study October 1982 - Decenber 1983
6. PERFORMING oR T75 msex NUUE
IDA PAPER P 41WO

7. AUTNORra) I. CON4TRACT ON GRANT NUMOER(a)

T.C. Bartee, O.P. Bumermn, J.M. Mc~uillan,
S.T. walker MDA 903 79 C 0018

S. PenRFORMING ORGAI~fTION N APE APO ADDRIESS 10. PROGRAM ELEMENT. PROJECT. TASK
Institute for ieense Ana~.yS5S AREA & WORK UNIT NUM11ERS11

1801 N. Beauregard Street Task T-3-163
Alxndria, VA 223U

It. CONTROLLIN 0 FICE NDNE6 A A CRESS 12. REPORT GATE

De (C I), rta %stem. April 1984
AS'rrThe Pentagon I UURO AE

Wahngo, D.C. 20301 filrIG F AE

14. MONITORING AGENCY NAME & ACOREWSIf diU.,inmt bu Conaivlinad Office) IS. SECURITY CLASS. (of tle fP~fI)

DoD-IDA Managsrsnt Of fice
1801 N. Beauregard Street UNLASSIFIED
Alexandria, VA 22311 IS&. OECLASSIFICATION/OOWNGRAOING

16. OISTRIUIUTION STATEMENT (of Akla Napi)

Approved for public release; distribution unlimited.

17. OISTRIOUTION STATEMENT (of Cho. abstract etered In Stock 0.It difforent home RoPest

None

1114 SUPPLEMENTARY NOTES

N/A

IS. KEY WGOS (Cuuuae an imeo side It necearya md Idenify7 by blocki mbor)

Data Base Manageament system, protocols, local area networks, security, link
enrya~ption, end-to-end encryption, Ada, transport level protocols, logistics

M0 AISTRACT (CtmII. on ,awoide it neavy d IE 6V block i)

This report has four subjects:

(1) An investigation of DoD protoco standards for coaputer comn-
unications. eaphasis is on the X2. 5 protocol and a sirilar
existing DON protocol.

(2) Local area newrk protocols are discussed with enphasis on
security architecture.

JAW 7 DTO F1~ laOMLT UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whon Doe EnteroO

UNCLASSIFIED
SUCcvNT CLAMICAION OF ness p~atubm ame WIN

20. (Cntinued)

(3) A study of the logistics usage Of AUIWIN and an analysis Of
a way to reduce that usage.

(4) A study of data base nunagement systemu and their use in data
ocuunications systemsu. Interfaces to Adia are siphasized in

this section.

UNCLASSIFIED
IONTbSY C16AMICATION OF TMI PAOU111bef Date aE

Accesion For

k XIS ORPb!
DTIC TAB .I•
Unannounced 0E-
Just itftat ion_ _

Distribution /

Availability Codes A P -
Aval' and/or IDA PAPER P-1774

Dist Special

C3I INFORMATION SYSTEMS
INTERNETWORK STUDY

T. C. Bartee
0. P. Buneman
J. M. McQuillan

S. T. Walker

April 1984

IDA

INSTITUTE FOR DEFENSE ANALYSES AL-
1801 N. Beauregard Street
Alexandria, Virginia 22311

Contract MDA 903 79 C 0018
Task T-3-163

DISTRIUTIoN sTATEMENTA

Approved for public release;
Disttibution Unlimited

CONTENTS .,.

Abbreviations iii

I. INTRODUCTION I-I

A. Background Material I-I
B. Overview Of Study Areas I-i
C. Conclusions And Recommendations 1-3

II. A COMPARISON OF DDN INTERFACE STANDARDS II-"

A. Introduction II-1
1. Terminology II-i S
2. The Basic Question 11-2

B. The 1822 STANDARD 11-2
1. Background 11-2
2. Usage 11-4 -

3. Implementation Questions -- "Watch Out's" 11-4
4. Decision Factors 11-5

C. The X.5 Standard 11-5
1. Background 11-5
2. Usage 11-7
3. Implementation Questions -- "Watch Out's" 11-8
4. Decision Factors 11-10

D . Key Issues 11-11
1. Quality Of Service 11-12
2. Cost 11-12
3. Security 11-12
4. Risk 11-13
5. Interoperability 11-13

E. Comparison And Evaluation 11-13
1. Similarities 11-13
2. Differences 11-14
3. Evaluation 11-14

F. Implications 11-15
1. Identification Of Protocol Architecture 11-15
2. Internetworking And Security 11-15
3. Interoperability 11-16 _O

4. Higher-Level Protocols - Electronic Mail 11-16

iii

III. LOCAL AREA NETWORK SECURITY III-1

A. Introduction III-I
B. Overview Of LAN Security Vulnerabilities 111-2
C. Security-Relevant Characteristics Of LANs 111-6

D. Protection Measures 111-8
E. Trusted Local Area Network Capabilities 111-12
F. Recent Developments 111-17

,e

IV. LOGISTICS NETWORK IV-1

A. Background IV-1

B. Status Of DAAS Systems IV-8
C. Summary IV-9

V. DATA BASES ON COMPUTER NETWORKS V-1

A. Data Base Programming Languages V-1
1. Introduction V-1
2. Data Base Extensions For Ada V-3
3. Examples Of Problems In Integrating

Data Bases V-12
4. Conclusions V-26

B. Data Bases And Expert Systems V-28
1. Introduction V-28
2. Some Well-Known Systems V-30
3. The INTERNIST System V-30
4. MYCIN V-34
5. The PROSPECTOR Consultant System V-36
6. DENDRAL And META-DENDRAL V-40
7. Computer Configurers V-41
8. Data Bases And Expert Systems V-42
9. The Use Of Data Bases V-43

References R-1

i

iv

* 0 d

ABBREVIATIONS

AFLC Air Force Logistics Command
ASD Assistant Secretary of Defense
AUTODIN Automatic Digital Network

BIU Basic Interface Unit
BBN Bolt, Beranek and Newman

CCITT Consultative Committee--International Telegraph and
Telephone

C3 , Communications, Command, Control and Intelligence
CONUS Continental United States '
CSMA/CD Carrier Sense Multiple Access/Collision Detection

DAAS Defense Automated Accounting System
DARPA Defense Advanced Research Projects Agency
DCA Defense Communications Agency
DCE Data Connection Equipment
DDN Defense Data Network
DES Data Encryption System
DIA Defense Intelligence Agency
DLA Defense Logistics Agency
DLANET Defense Logistics Agency Teleprocessing Network
DoD Department of Defense
DoDIIS Department of Defense Information Systems

Internet Study
DTE Data Terminal Equipment

FTP File Transfer Protocol

HDLC High-Level Data Link Control .. i
HFE Host Front End

IP Internetwork Protocol
IPLI Internet Private Line Interface
IPMS Interpersonal Messaging Service
I-SA AMPE Inter-Service/Agency Automatic Message Processing -
ISO International Standards Organization

JCS Joint Chiefs of Staff

LAN Local Area Network

v

NVT Network Virtual Terminal

PAD Packet Assembler/Disassembler
PBX Private Branch Exchange
PLI Private Line Interface

RFNM Ready for Next Message

SDC System Development Corporation 0
SDLC Synchronous Data Link Control
SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

WIS WWMCCS Intercomputer Network

vi '

0

0

S _

0

,..." " "

I. INTRODUCTION

A. BACKGROUND MATERIAL

In October 1982, the Institute for Defense Analyses was
requested by the Director, Information Systems, ASD(C31), to
study Local Area Networks and, in particular, the security

aspects of these networks. Since many DoD local area networks
will be connected into larger networks, in particular the DDN,

this aspect of their usage also was to be studied. Important -9
relevant subjects in this general area included the protocols

now being developed by DoD and the user interfaces having to

do with data bases and allied programming and query languages.

There were two additional related areas to be studied: -

(1) the logistics usage of AUTODIN with emphasis on reducing

the load on that network, and (2) a comparison of X.25 and the

1822 protocol with a view toward possible adoption of X.25 by

DDN. -

B. OVERVIEW OF STUDY AREAS

The security architectures for local area networks uti- _

lize two general approaches which can be used in either pure

or mixed forms in a given network. The first of these is to

form a secure network using physical security. This can be

realized in many ways, but generally includes placing the

transmission media--coax, for example--in hardened pipe

and then keeping the pipe visible for inspection. There are

several allied techniques and generally the network areas are

1--1

. . ..

also kept physically secure to some security level using con-

ventional means, and transmitters and receivers are placed

in Osafe" enclosures. The second general technique involves

encrypting the data. The encryption is often end-to-end in

local area networks where the header is in the clear because

other receivers, and often the network itself, must have header 0

information to perform properly. Link encryption is then used

as required.

The DoD first developed a device called a Private Line

Interface (PLI), which will encrypt data while having the header .0

clear, and a new improved device called an Internet Private Line

Interface (IPLI) is now in development. IPLIs are moderately

expensive, however, and the keys required to update these

devices must be distributed and updated at intervals, and this

can be a problem in system operation.

Considerations concerning the above can be found in later

sections on security in this report, as can considerations con-

cerning the partitioning of users into communities of interest . •

and blocking the passage of inappropriate security level data

into (or from) receivers (and transmitters).

The Defense Data Network (DDN) is now progressing in its

development, and the operation of this network appears to be -

satisfactory from most viewpoints and ahead of schedule in many

cases. As a result, the demand for usage of this network now

exceeds original estimates and still more user communities

appear to be suitable candidates for possible inclusion into the - .

network. In many cases the potential users make heavy applica-

tion of commercial hardware and software which has not been sub-

stantially modified for DoD usage. This provides cost savings

and interoperability within prescribed equipment circles (IBM- _ 0 _

to-IBM; DEC-to-DEC, for example) but can be a problem when wide-

spread interoperability is considered. Fortunately, several

International Standards exist or are in preparation which show

promise of making manufacturer-to-manufacturer interoperability _

1-2

possible. The U.S. Government and DoD often participate heavily
in development of these standards, and development and usage by

DoD plays an important role in the success of many of these
protocols.

A particular protocol called X.25 is now widely used com-

mercially, and many logistics (and other) users have expressed

a desire to use X.25 as an access level protocol to the DDN

which now uses a protocol called 1822 (the number was the number

of a Bolt, Beranek and Newman report describing the protocol,

see Section II). A study of this protocol and instructions on

its usage, along with a comparison of X.25 and 1822, can be

found in Section II.

The logistics community was the original developer of the

AUTODIN network. As time passed, however, many other users

joined this network and it has grown and prospered in recent

years. At present, however, there are plans to phase out AUTO-

DIN by the early 1990s. At the same time, usage of the network

continues to accelerate, largely because present users find

their needs increasing.

Because logistics users are still the major users of the

AUTODIN network, a study was made to determine if some of the

load could be removed without disrupting service and without -0
economic penalty. This appeared to be judicious, not just for

normal operation but also because the network plays a vital

role in plans for crisis situations, and at this time there

would reasonably be an increase in usage of the logistics com-

munity which might affect many planned operations. Our study

of this subject shows that a substantial decrease in the logistics

load can be made in a reasonable, cost-effective way, and this

is reported on in this paper. Section IV deals with this in

more detail, giving many statistics on present usage.

C. CONCLUSIONS AND RECOMMENDATIONS

The studies which were made have yielded several general

conclusions and recommendations, which follow. Supporting

1-3

, ,.. . • .

evidence and the reasoning behind these conclusions and recom-

mendations are in Sections II through V.

1. The X.25 protocol is a good protocol for DDN when 0

properly used, and the DoD specification now being

worked on appears satisfactory. There are no features

in 1822, which is now used in DDN, which are not also

in X.25. Care must be used in specific cases, and a

list of precautions is in Section II. There is no

planned interface between the IPLI in development and

X.25, so IPLI users must use 1822. Further, X.25 and

1822 cannot interface directly, so command and control 0

and other users requiring encryption of data must

still use 1822. Despite this limitation, we recommend

adoption of X.25 for the DDN for unclassified users.

2. The logistics community can reduce the present load on

AUTODIN by about 20 percent by unloading a major part

of the usage by the two DAAS sites. A description of

how this can be accomplished can be found in Section

IV. The Defense Logistics Agency (DLA) is moving on this

subject and has already cancelled its recently issued

request for bids for new AUTODIN I processors. Further,

there is a movement, including meetings and studies,

toward consideration of the DAAS traffic in conjunction S

with the DLA network, with a view toward using DDN as

a primary carrier. We feel this is an excellent

direction for study and future action.

3. The widespread use of AdaO which is now planned has -

considerable implication concerning dita base manage-

ment systems in DoD C31 networks. The query languages

to be used and interfaces are just now being worked

on, and some considerations and suggestions in this

area can be found in Section V.

4. The techniques to achieve local area network security

are only now in development. The best prospect for

Ada' is a registered trademark of the Ada Joint Program Office
(AJPO) of the U.S. Department of Defense.

1-4

0

pS

near-term use appears to involve a combination of

physical security for communications media and "safes"

for transmitters and receivers, along with some soft-

ware or hardware at transmitters and receivers to block

data transfer with unsatisfactory security levels or

compartmental designations. More technical details of

this strategy can be found in Section III. More study

and work in this area needs to be done before a com-

pletely satisfactory architecture, with the necessary

software and hardware, is arrived at, however, and key

distribution continues to be a major problem.

5. There are three high-level protocols now proposed for

DoD usage which show considerable promise. They are

(1) MIL-STD-1788 File Transfer Protocol, (2) MIL-STD- .

1782 Telenet Protocol, and (3) MIL-STD-1781 Simple

Mail Transfer Protocol. These are three useable and
well-thought-out protocols for DoD purposes. Our chief

reservation concerns the Mail Transfer Protocol because

new IBM protocols show promise of becoming industry

standards and this fact needs to be considered in

future plans.

1-5

- _ _

I-5

-9

0

0

0

S

~0

____ I
0 __

S
- -1

0 -

S

II. A COMPARISON OF DDN INTERFACE STANDARDS

A. INTRODUCTION

This chapter discusses protocols for the Defense Data

Network (DDN). It specifically compares two access standards,

the ODDN" X.25 and 1822, which are protocols for the inter-

connection of host computers to DDN. Then, some implications

of the choice of access protocol on other DDN design decisions

are presented. This is followed by some information on higher-

level protocols, in particular the mail protocols.

1. Terminology

Before beginning analysis, it will be useful to review the

seven-level reference model developed by the International -

Standards Organization (Ref. 1). Known formally as the Basic

Reference Model for Open Systems Interconnection, the ISO model

has become the commonly accepted way of analyzing and under-

standing network functions. The names and numbers of the

levels of the model will be used below. From the lowest, or

most basic level, they are defined as follows:

(1) The physical interface, or connection (e.g., RS-232).

(2) The data link protocol. For example, HDLC, SDLC.

(3) The network level. Responsible for routing between

users and for control of the flow of data.

(4) The transport level. Responsible for user-to-user

error recovery.

(5) The session level. Sets up and breaks connections

on behalf of the user.

II-I_

11-

(6) The presentation level. Provides for formatting of

data so that both user and network can operate on

the form most efficient for their purpose.

(7) The application level. The individual user selects

the application level protocols in ISO model. This

is the level where data base systems and application

programs reside. • (

2. The Basic Ouestion

The two interface specifications in question, X.25 and

1822 (described in more detail below), are standards for proto-

col levels (1) through (3). It is possible, and perhaps even

desirable, for these two approaches to coexist on DDN. It may

also be possible and desirable to use both of these lower-level

specifications to support the same higher-level protocols when

interoperability is required.

The main questions to be addressed here are: How do these

two specifications compare? Are there inherent advantages or

disadvantages of one or the other for C3 1 users of DDN? Are

there any cautions or guidelines to be followed? (A list of

*watch out's" is provided below.) What are the implications of

this choice in other areas, especially in higher protocol levels?

B. THE 1822 STANDARD

1. Background

The access protocol used in previous DoD packet switching

networks is commonly referred to as "1822", since its specifi-

cation is contained in BBN Report No. 1822, originally published

in 1969 (Ref. 2).

To understand the origins and evolution of 1822, it is

helpful to recall that at the time of the design of the ARPANET

there were no standards for data communications protocols as

we know them. The ISO model had not been developed. X.25 had

not yet been designed. HDLC had not been formalized. Most

9

data communications were accomplished with vendor-specific proto-

cols such as IBM's BSC. The designers of the ARPANET wanted to

make an interface specification that would be more general,

that would permit connection of computers of different sizes

and speeds.

The original 1822 interface solved this problem with a one-

of-a-kind connection, composed of several signals in parallel.

The signalling provided for the transfer of bits in both direc-

tions simultaneously, at a mutually determined rate, according

to a "hand shake" technique. It also provided conventions for

determining whether the other end of the connection was ready

to send or receive data. This early interface design, a set of

protocols at levels 1 and 2, is now obsolescent. The same

functionality is available at level 1 with RS 232 and MIL STD

188, and at level 2 with HDLC and HDH (Ref. 2). For the pur-

poses of this analysis, it does not matter whether a DDN sub-

scriber uses the old-style parallel signalling of 1822, or the

newer HDH. Both cases will be designated as "1822".

The significant differences between 1822 and X.25 come at

level 3. This level specifies the use of the 1822 ARPANET

Leader, a 96-bit descriptor assigned to each message passed

between a host and the network. In the host-to-network direc-

tion, the leader of a data message carries the number of the

destination network, IMP, and host. It'also defines the type

of message (datagram or virtual circuit), its length (0 to 8063

bits), and an identifying number. Control messages can also be

sent from the host to the network to indicate various kinds of

trouble, which are separately identified. Messages flowing

from the network to the host have similar leaders, with one

important additional message type, the RFNM (Ready for Next

Message), which tells the host that the specified message

reached its destination.

These facilities are similar, but not identical, to those

offered by most level 3 protocols. In particular, it would be

11-3

possible to translate this protocol into the X.25 level 3, but

not the reverse, since 1822 has a different and broader range
of features. -

2. Usage

The use of the 1822 interface specification has been con-

fined to the ARPANET and similar networks, almost all supplied

by BBN to the DoD community. It is a good interface, which has S

stood the test of time, but it has not stimulated any signifi-

cant commercial spinoffs. BBN has tried, with little success,

to sell commercial networks with the 1822 interface. Most

commercial customers demand X.25. A few small companies have 0

made a business from supplying 1822 hardware and software for

various kinds of computers, but these companies remain an insig-

nificant force in the larger data communications marketplace.

1822 represents an evolutionary dead end. it was once leading- 6

edge technology, but events have overtaken it.

3. Implementation Ouestions--"Watch Out's"

The 1822 interface is so well-understood within the com-

munity of interest that there are relatively few cautions that

need to be mentioned. The most important are:

- Implementation investment. Most computer types are

already connected to ARPANET. The technology should be

borrowed, copied, or otherwise acquired rather than

reinvented. This will minimize both cost and risk. It

is generally not a good investment of time and effort

to develop new 1822 hardware and software for types of

computers not yet connected to DDN.

- Quality of service. It is important within 1822 to

specify the nature of the network service desired.

This includes the choice between datagrams and virtual

circuits, as well as the handling of error conditions

and blocking.

- Efficiency of host software. Experience has shown that

network performance is usually limited by the speed of

11-4

'1

the software in the host computers, including the 1822

handler, and higher protocols such as TCP, etc. Perform-

ance tuning usually pays for itself in this area.

4. Decision Factors

A prospective DDN user considering the use of 1822 for

access to DDN should consider the following factors:

- Is it necessary or desirable to have datagram service?

Members of the ARPANET community working on packet

voice have found that datagrams are preferable to

virtual circuits for their application. DDN X.25 does

not offer datagram service. For this reason, we would

expect that DARPA will continue to support the 1822

standard for certain users.

- Is it important to protect an investment in 1822 tech-

nology on a particular computer? For some computer

systems, 1822 was introduced years ago with considerable

difficulty and expense. Some of these systems are

approaching the end of their useful lives. In such

cases, it would be unwise to invest in a new implemen-

tation of X.25, even at low cost. In other cases, the

maintenance of 1822 technology for several computers

may be the responsibility of a single user community.

It may be cheaper and simpler to stay with 1822 for all

of those computers rather than converting them to X.25.

C. THE X.25 STANDARD

1. Background

CCITT Recommendation X.25 is an international standard for

the connection of computers and terminals to data networks

(Ref. 3). X.25 defines the way in which a packet device, called

in the standard a "packet DTE" (Data Terminal Equipment),

attaches to a network port or "DCE" (Data Connection Equipment).

It defines the physical device interface (level 1), the link

11-5

protocol, a form of High-Level Data Link Control (HDLC), and a

unique protocol to combine many user conversations onto a single

data link (level 3).

The DDN X.25 specification is compliant with FIPS Publica-

tion 100 and Federal Standard 1041, which are previously estab-

lished for the use of X.25 with the Federal Government and

within the Department of Defense (Ref. 4). It is very important

to note that this specification is not exactly the same as the

CCITT Recommendation X.25 adopted by most carriers.

CCITT Recommendation X.25 contains many options and imple- 0

mentation choices. FIPS 100/Federal Standard 1041, which

specifies the general use of X.25 for the Federal Government,

defines some of the choices left open in X.25. In areas where

X.25 allows a choice, a single choice appropriate for DDN is

specified in Ref. 4; in areas which X.25 leaves unspecified,

addressing in particular, conventions are specified that are

consistent with the overall architecture of DDN. The intent of

this approach is to make DDN service available to hosts in a

way that requires. no changes to a host DTE implementation that

is compliant with FIPS 100/Federal Standard 1041 and CCITT

Recommendation X.25. If hosts implement the extensions des-

cribed in Ref. 4, users will be able to take advantage of

additional DDN features required in military networks, such as

precedence and logical addressing.

The DDN X.25 DCE supports all facilities specified as E

(essential) by FIPS 100/Federal Standard 1041, and most facili-

ties specified as A (additional). The additional facilities

not supported are:

(1) datagrams and associated facilities, and

(2) bilateral closed user groups.

A final consideration is how to link X.25 users with other

X.25 users, who may be using different computer systems, and

with non-X.25 users. As stated in Ref. 4:

A key goal of the DDN X.25 implementation is interoper- W
ability among all DDN subscribers. That is, effective

11-6

communication should be possible, not only between sub-
scribers attached to the DDN using identical vendor-
supplied X.25 implementations, but between subscribers
using different X.25 implementations, and between a
subscriber using an X.25 interface to the DDN and a
subscriber using an 1822 interface to the DDN.

The DDN X.25 DCE offers two types of service to X.25
DTEs: ,

(1) DON Standard X.25 Service, which, when used in
conjunction with DoD standard protocols, provides
interoperable communication between an X.25 DTE and
other DDN hosts that also implement the DoD stan-
dard protocols, whether they are connected to DDN
via the 1822 interface or via the X.25 interface;

(2) DDN Basic X.25 Service, which provides communi-
cation only between an X.25 DTE and other DDN X.25
DTEs implementing compatible higher-level protocols.

This is a very critical aspect of the DDN X.25 interface,

one that will be analyzed in more detail below.

2. Usage

The primary use of X.25 is to connect a computer to a pub-

lic packet network such as Telenet .or Tymnet. These networks

usually charge for service based on a flat fee per port plus a

usage charge. Because X.25 provides a user with a protocol

supporting multiple data conversation on a single link, a com-

puter connection through an X.25 port can support the same

number of logical channels as several PAD (packet assembler/

disassembler) ports into the network, but at a lower cost.

The single X.25 link usually costs less for the communication

interface hardware on the user's computer.

X.25 is also used in private packet networks such as DDN

as a concentration protocol either to save on the cost of com-

puter ports or to permit connection of more terminals than a

computer can physically attach.

Some form of X.25 is currently supported by the following

organizations (this list is not exhaustive):

I1-7

-S

0

Amda hl ICOT
Associated Camputer Consultants Infotron
Atlantic Research I.P. Sharp
AT&T Memotec
BBN National Semiconductor
Burroughs NCR/Comten
Cab leshare Northern Telecom
Codex Pacific Software Manufacturing
Corn-Pro Perki n-Elmer
Control Data Corporation Prime
Dartmouth Time Sharing SESA/Honeywell
Data General Siemens
Datapoint Spectron
DEC Stratus
Dynatech Packet Technology Systar
Gandalf Tandem
GTE Telenet Texas Instruments
Harris Tymnet
Hewlett-Packard Univac
Honeywell Varian Associates
IBM Corporation

There are over 20 countries with X.25 public data networks.

In addition, there are at least five manufacturers each of

facsimile systems, local area networks, and digital PBXs who

support X.25 (Refs. 5, 6, 7).

3. Implementation Questions--"Watch Out's"

Not all X.25 implementations offer the same level of user

support and functionality. Even though the protocol is stan-

dardized, variations in the features available can conflict

with the requirements of other offerings. Prospective C3 , users

of DDN X.25 should evaluate the following issues:

- Number of logical channels which may be assigned on a

link. Too small a number is an artificial limit on the

number of terminals and users that can be sutpported.

- Maximum speed of the line. Attaching to a network at a

higher speed will provide improved performance levels

or allow more users for the same level of performance.

- Support of the X.29 PAD control protocol. Special

packet types are used to control a terminal attached

via a PAD. Host support for X.29 will simplify user

programming.

11-8

K 9

i

- Support for optional facilities. X.25 contains a

number of special features--closed user groups,

datagram service, etc.--which are not supported by

DDN. In addition, some of the X.25 features which are

supported in DDN may not be supported by all computer

vendors.

- Operating system and application support. Not all

operating systems available for a computer system may

support X.25. Specialized applications packages, such

as data base query languages and various embedded or

specialized DoD applications, may not support users

connected via X.25.

- Memory and other hardware requirements. Some computers

will require hardware upgrades or expansions.

- Address length. DDN may interconnect with several of

the U.S. and overseas public packet networks. If so,

users should be aware of the international standards

permitting addresses up to 15 digits in length. Users -6 a

connecting through DDN to an international packet net-

work need to have host software which can accommodate

as many address digits as the called network and inter-

national routing conventions require.

- Level of vendor support. Any X.25 implementation should

support all nonoptional functions of level 2 and level

3. DoD users should beware of vendor statements such

as the product is "based on" or "similar to" or "supports

at level 2," used to qualify the support. If the full

standard is not implemented, it can have serious

implications for interoperability.

- Level of DDN support, and matching vendor features with

DDN. To quote from Ref. 8.

If DDN provides a sophisticated high-
performance X.25 interface (optimized for TCP
hosts for example), then an "off-the-shelf"
X.25 host software package will probably not

11-9

take advantage of most DDN X.25 features. It
may in fact not be able to operate without
some enhancement. DDN should not be forced •
to provide a service which is the lowest
common denominator of services provided by
commercial carriers. Since hardly any broadly
applicable X.25 hosts exist, and any X.25 host
will probably need to undergo enhancements, we
will strive to provide good DDN X.25 service
unconstrained by current host implementations.

- The implications for host planners are clear: do not

assume that the existing vendor-supplied and supported

X.25 package will work well (or at all) in DDN

without modification.

- Basic versus Standard X.25 service. One of the most

important implementation questions facing the DDN is

whether to enforce connection to DDN using a Standard

X.25, with the DoD standard protocol architecture of

TCP, IP, FTP, and SMTP, or whether to allow use of the

vendor-supplied protocols for computer systems (e.g.,

IBM's SNA or equivalent). The former choice offers .

universal interoperability with any other computers

which support the DoD standard. The latter offers a

lower cost solution to partial interoperability with

similar computer systems. As noted in the section on

internetworking below, users of basic X.25 service will

be limited in their ability to communicate with users

on other networks and with classified users.

4. Decision Factors

A user deciding on the use of X.25 for access to DDN should

consider the following questions:

- will there be a need to connect the same hosts and

terminals to public packet networks like Telenet and

Tymnet? Some users look upon such public networks as

their backup. If so, X.25 is advantageous.

- Is it desirable to use an access method widely available

on different host computers? X.25 is an international

II-10

p

ji

standard, so it is supported by most of the major com-

puter companies and can be used to link computers of

different speeds, types, and manufactures.

- Will terminals be connected by X.25 as well as host

computers? They will need to be connected to PADs, at

extra cost.

- Do the application programs to send and receive data

over DDN exist already, or will they have to be written?

It is more expensive to modify existing telecommunica-

tions applications written for an earlier generation

network than to develop new software with X.25 in mind.

- Do the computers and terminals support X.25 already?

Have they been installed already? New equipment can be

purchased for X.25 compatibility, reducing or eliminat-

ing conversion costs. However, much of the anticipated

usage of DDN will come from older equipment which does

not support X.25 today.

- If the X.25 support is in place already, is it compatible

with DDN? As noted above, this issue may be the cause

of some unpleasant surprises. The X.25 package must be

compatible with FIPS 100/Federal Standard 1041, and

validated for use on DDN. Furthermore, it may require

enhancement to take advantage of DDN features.

- Does the user organization have personnel with data

communications experience, especially with X.25? Soft-

ware work on X.25 can be difficult without experienced

staff. Users without this kind of experience in-house

may wish to look closely at vendor support for network

hardware and software.

. O

D. KEY ISSUES

DDN is a large-scale system which at present has more than

one computer network. DDN's goals include:

1I-11

0

- quality of service

- low cost

- security

- low risk

- interoperability

Each of these points is discussed briefly below:

1. Quality of.Service

It is of paramount importance that DDN service remain highly

reliable and survivable at all times. Of secondary weight, but

still of major importance is the quality of service offered to

users, measured in delay and throughput. Interface specifica-

tions such as X.25 and 1822 contribute directly to these goals

since DDN is only as good as the access lines into it.

2. Cost

There are many cost elements to be considered in selecting

an access method for DDN:

- cost of acquisition/development

- cost/efficiency of operation

- cost of maintenance

The hardware and software to operate X.25 and 1822 repre-

sent a relatively small part of the overall DDN budget, but a

significant amount of money in themselves, when hundreds of

host computers are involved. Clearly, it is the total of all

cost elements over the life cycle of use of DDN that is of

most interest.

3. Security

There are no particular security issues with regard to the

choice between X.25 and 1822 for this network. With regard to

classified but sensitive data DES encryption might be used

when required.

Use of the IPLI, which is an end-to-end encryption device

is another matter, however. Here, the use of X.25 raises impor-

tant design questions, which are treated at length in Ref. 4.

At the time of this writing, the IPLI X.25 architecture has

11-12

I

not yet been specified. This means C3 , users are almost forced

to 1822.

4. Risk

The risk of failure in DDN should be kept to extremely low

levels, considering the national security implications of a

major problem. There are several categories of risk to be con-

sidered, most especially:

- implementation risk

- operation risk

The choice of interface standard is not a major risk ele-

ment in DDN. Nevertheless, if one interface offers a lower risk

of failure, it may be an important consideration in the decision.

5. Interoperability

There are at present two groups of DDN subscribers--those

host computers which run vendor or other special protocols, and

those which use the standard DoD protocol architecture, including

TCP/IP. These two groups cannot communicate with each other,

even if they both use the same interface standard for levels 1

through 3, either X.25 or 1822.

On the other hand, the choice of interface standard for a

particular host computer dictates which other computers it will

interoperate with. Choosing basic X.25 means that the system

can communicate only with compatible X.25 DTEs (the same holds

true for selecting 1822 and vendor protocols at higher levels).

Choosing standard X.25 (or 1822 plus TCP/IP) means that com-

munication is possible with any computers that implement TCP/IP,

regardless of interface standard. Thus, interoperability

depends almost entirely on the choice of the higher protocols.

E. COMPARISON AND EVALUATION

1. Similarities

(1) The multiple channel capability of X.25 allows users

to exchange data between several tasks at the same

11-13

l S_e

time, and still to support terminals on one system

accessing programs or data on another. 1822 offers

the same capability.

(2) X.25 is full-duplex and can support simultaneous

transmission in both directions, reducing interference

between users. The same is true of 1822.

(3) The maximum message length is similar--8192 bits for 0

X.25 and 8063 bits for 1822. For DDN standard (inter-

operable) service, even this difference is irrelevant,

since the limiting factor is the maximum IP packet,

which is 576 octets (4608 bits). These lengths are

adequate for good host computer efficiency.

(4) Both protocols use the same levels 1 and 2 (consider-

ing only the high-level data version of 1822). Fur-

thermore, both protocols can support the same protocols 0

at levels 4 through 7.

2. Differences

The overriding difference between the two specifications

for unclassified users is that X.25 is a very successful

national, Federal, and international standard. This has bene-

fits for C3 , users in the form of lower implementation costs,

more flexibility, better availability of compatible equipment,

and a larger pool of technical talent from which to draw. P
3. Evaluation

Issue X.25 1822

Quality of service (Equal)

Cost

Operation (Equal)

Acquisition Low High

Maintenance Low High

Security (To be determined)

Risk Low Medium

Interoperability (Depends on higher levels)

9

II-14

S

F. IMPLICATIONS

A real issue in DDN protocol selection is vendor protocols

versus DoD protocols.

1. Identification of Protocol Architecture
X.25 DTEs employing the DoD standard TCP/IP protocol archi- .o

tecture must indicate this by means of the call user data field

of the CALL REQUEST packet. It is important to note (Ref. 4)

that:

Indication of the use of the DoD standard protocol
architecture is independent of the selection of DDN
standard or DDN basic X.25 service ... Therefore, a
host employing the DoD standard protocol architecture
and using DDN standard X.25 service must include both
the DDN standard X.25 service facility and the call
user data DoD standard protocol identif--tion in its0
CALL REQUEST packet.
X.25 users of non-DoD protocol architectures may use any

identification recognized by the other end.
2. Internetworking and Security -

As explained in Ref. 4, the choice between TCP/IP and

vendor protocols has significant implications. Choosing not

to implement TCP/IP will limit the ability of C31 users to

communicate with users on other networks and to gain classified

network access.

The Defense Data Network is an Internetwork environ-
ment. That is, DDN as a whole is made up of a number
of constituent packet-switching networks that are inter-
connected via gateways. Communication across gateways
requires the use of the Internet Protocol, which, for
a host accessing DDN using X.25, requires that the host
implement the DoD standard protocol architecture and
employ DDN standard X.25 service. In addition, a clas-
sified host is attached to a DDN constituent network
of lower classification by means of an Internet Private
Line Interface (IPLI). IPLIs, which themselves contain
gateways, also require the use of the Internet Protocol;
moreover, they do not, as currently designed, offer an
X.25 host interface. These attributes of the DDN Inter-
net have two implications for users of DDN basic X.25
service:

II-15

°1

(1) DDN hosts that do not implement IP and higher-
level DDN protocols, and which use only DDN basic
X.25 service, cannot communicate across gateways.
Their network communication is therefore restric-
ted to a single DDN constituent network.

(2) X.25 hosts cannot be provided classified service
on a constituent network of lower classification.
Should X.25 host access be developed for the IPLI
in the future, classified network access will be
made available to hosts using DDN standard X.25
service only.

3. Interoperability

There are two levels of interoperability that might be

considered valuable for users. The first is available with DDN

basic X.25 service and vendor protocol architecture for levels

4 through 7. This permits users with the same protocol archi-

tecture to exchange information in many cases. This is the main

requirement, since all of the computers in a particular appli-

cation area may be of the same type (e.g., HIS 6000, IBM 370,

DEC VAX, etc.).

The second level, or true interoperability, requires imple-

mentation of the DoD standard protocols TCP and IP, as well as

the higher-level protocols which implement DDN standard services,

when such services are provided by the host: the Telnet Protocol

for character-oriented terminal support, the File Transfer Pro-

tocol (FTP) for file movement between hosts, and the Simple Mail

Transfer Protocol (SMTP) for communication between electronic

mail service hosts.

4. Higher-Level Protocols--Electronic Mail

As a common and important example of a higher-level proto-

col, consider electronic mail systems that operate "on top of"

either X.25 or 1822. The proposed standard for this applica-

tion is Simple Mail Transfer Protocol (SMTP). SMTP has been

developed to take advantage of TCP and IP functions. It is

independent of the particular transmission subsystem(s), requir-

ing only a reliable ordered data stream, such as is provided by

11-16

o

TCP. Further, SMTP is capable of relaying mail across one or

more networks. This means two hosts can exchange mail across

an internetwork environment, such as the DDN. It even provides

for electronic mail to be relayed from the source computer to

the destination through an intermediary computer system. Thus,

mail can be relayed between hosts on different transport systems

(e.g., DDN and some other network) by a host on both systems.

SMTP is a specification only for the transfer of mail mes-

sages, not for their format, content, or interpretation. Thus,

two computers with radically different mail systems, user inter-

faces, terminal characteristics, or other features, may have

difficulty in exchanging messages that are intelligible to the

final recipient without additional protocols.

SMTP is a good protocol for the ARPANET and similar DoD

networks where a wide diversity of software development occurs

and very little standard vendor software is used for applica-

tions like electronic mail. However, SMTP, like 1822 before

it, is not likely to become a commercial standard. If DDN .

should evolve into a network system with some computers running

vendor protocol architectures, SMTP may no longer be the elec-

tronic mail protocol of choice.

What are the alternatives? There are at least three stan-

dards activities of note:

(1) CCITT

(2) National Bureau of Standard

(3) IBM (de facto standards, but perhaps the most impor-

tant)

The CCITT work is expected to result in the acceptance of

a standard for "Message Handling Systems" in 1984, a specifica-

tion of both a delivery standard and a user service. The CCITT

standard calls for two protocols at level 7: a message transfer

layer (analogous to SMTP), and a user agent level above that.

The two layers can be compared to envelopes and letters,

respectively. The first user agent (of several) is called

11-17

Interpersonal Messaging Services (IPMSs), and is designed for

multimedia messages, including test, Teletex, and facsimile.

The 1984 standard will not support full internal formatting of
messages, but many coded fields are specified to provide for

message handling (date, reply to, importance, etc.).

NBS has been a participant in the CCITT work, but has

developed a separate standard which is now a FIPS adopted by

several U.S. vendors. It remains to be seen if these two stan-
dards will be brought together.

Finally, IBM has developed its own standards in this area.

It is possible and perhaps even likely that Document Interchange

Architecture (analogous to SMTP and MT) and Document Content

Architecture (analogous to UA/IPMSs) will be de facto stan-

dards of profound importance in communications. Already Wang

and DEC have announced their support, and many other vendors

are likely to follow.

What does this mean for the DDN? It is difficult at this

time to predict which of these protocols will offer the lowest

cost and greatest flexibility in the future. However, the IBM

standard cannot be ignored because it should offer "complete"

document intelligibility across a wide range of equipment,

rather than to choose a more limited DoD standard such as SMTP,

even though SMTP is designed for the DDN internet and DIA/DCA

are not.

111

II-18

S

0

III. LOCAL AREA NETWORK SECURITY
*0

A. INTRODUCTION

There is a rapidly growing proliferation of local area

networks (LAN) throughout the Department of Defense (DOD). -

LANs represent the present state of the art in the continuing

evolution of information and communications systems. LANs are

playing a crucial role in the future of the DOD's major com-

mand and control and intelligence systems as well as local

administrative, financial, personnel, logistics and word proc-

essing systems. There are plans underway to install literally

miles of local area network cabling within the Pentagon in the .

very near future. Along with any new technology of this sort

comes a vast array of compatibility, interoperability, and

maintainability concerns and questions which frequently take

years to resolve. One of the most serious of these concerns

is security; yet it remains one of the most neglected aspects

of system design.

Local area networks are frequently advertised with ads

showing it is straightforward to link terminals or personal

computers with all the other terminals and computers in local

computer/communications system. But this presents a problem

for DOD usage, since in almost every case users are only allowed

access to some of the files and other terminals and computers.

As a result, because the LAN connects all the computing resources

in a local environment, concerns about the protection of sensi-

tive information must be high on the DOD system designer's list,

and yet frequently in the rush to get a working installation
S

111-1

III-I

,O

these concerns are overlooked or consciously ignored. The

consequences of such action can be very serious. This chapter

of this report will provide an overview of the security rele-

vant aspects of local area network design and describe the

vulnerabilities of these systems and some of the measures that

can be taken today to protect them as well as areas where

additional research work is required.

There have recently been several reports describing

various security aspects of LANs (Refs. 9 & 10) which have made

specific recommendations for those planning near-term imple-

mentations. This report will review those recommendations

and update them with some very recent developments.

B. OVERVIEW OF LAN SECURITY VULNERABILITIES

The vulnerabilities of local area networks are best

described within the overall context of the total systems in

which they reside. Perhaps the best description of these _..

vulnerabilities is contained in the Report of the Defense

Science Board Task Force on Computer Security, published in

February, 1970 (Ref. 11). This report begins with a description

of the nature of the problem, including the types of computer p

systems and the threats to each of them. Such vulnerabilities

as accidental disclosure, deliberate penetration, active

infiltration, and passive subversion are discussed. In the
areas of security protection the report describes typical

physical protection measures, hardware and software leakage

points, and communications and organizational leakage points.

Figure III-1 is a reprint of the computer network vulnerability

chart which appeared in this report. This figure describes

the various types if security failures that can occur in a

computer communications system.

When considering the vulnerabilities of local area networks
in the context of Fig. III-1, one can view the LAN as replacing

111-2

S

ze Il

M to Af

Cba

0L0

5:lag m b '
06 us

~ * * ...4
CoAl

-. a
L, 4u - E

CA 0

oG

%. r- a IU

94- a-Ja

cl'I 000. of~

att

111-3

the set of wires from the switching center to the individual

users, and/or replacing the communication lines between the

processor and the switching center or replacing the entire S

switching center itself. The LAN is therefore subject to wire

tapping, radiation, crosstalk, hardware and software failures,

as well as personnel vulnerabilities from maintenance people,

operators, and system programmers.

There are many technologies for achieving local area

network capabilities. These include the use of broadband,

cable TV systems, baseband coaxial systems, and private branch

exchange (PBX) switching centers. The transmission media extend

from twisted pair, to coaxial cables, to fiber optic cables.

Many require a new physical plant but some allow extensive use

of existing facilities.

There are significant examples of the evolution of local 9

area network usage in major programs of the Department of

Defense. For example, the WWMCCS Information System (WIS)

Modernization Program has as its key initial ingredient the

installation of a local area net facility at each WWMCCS site,

linking user workstations to the Honeywell 6000 computers and

the WWMCCS Intercomputer Network. As the modernization program

proceeds, additional resources will be attached to these LANs,

providing special functions which are now performed by the e
Honeywell 6000 computers. Eventually, when all of the process-

ing now being done on the H6000s has been migrated away, they

will be removed from the network.

Most of the WWMCCS sites are at the Top Secret classifica- 0 _

tion level and all users presently having access to the H6000

machines must be cleared to that level, even though close to

85 percent of the information on those computers is classified
only at the Secret level. Therefore, a major factor in the evo-

lution of the WIS program is the establishment of a capability

to operate at several different classification levels and even-

tually to allow the use of multilevel secure computer systems.

111-4

9]

In this case, since the LAN provides the vital link

between all user workstations and computational resources, it

is absolutely essential that the LAN be able to properly pro-

tect classified information passing through it. This could

be done by providing different local area net facilities for

each classification or sensitivity level within a WWMCCS site.
However, such a solution would be very expensive, administra-

tively burdensome, and unacceptable operationally. It would

be very advantageous if the LAN supplied with the WIS moderni-

zation were able simultaneously to handle sensitive information

at several different levels. Some recent developments in LAN

technology allow for at least limited service of this type with

evolutionary expansion possible. These techniques will be

described later in this chapter.

At the other end of the sensitive information handling

environment are the efforts to install local area networks to

handle the proliferation of unclassified terminals accessing

local computer systems. There are major efforts at most DoD

facilities to upgrade existing communication services to local

area net capabilities. The thrust of these efforts is to allow

the linkage of existing and future unclassified computer services

to the wide variety of terminal systems scattered throughout a

facility.

Frequently there is little or no concern expressed for the

protection of sensitive information on these networks. The

excuse is given that the network contains only unclassified

information and if at some point in the future it should become

necessary to handle sensitive information, some form of encryp-

tion device can then be added to the network. This approach is

unfortunate and dangerous from several perspectives. First,

even though individual pieces of information on these data

base systems may be considered unclassified, frequently the

aggregation of personnel, financial, or logistics information

becomes quite sensitive, if not actually classified. Many

111-5

_0

times, for privacy reasons alone, personnel information should

receive some degree of sensitive protection. Financial informa- ..

tion can, in the wrong hands, be manipulated to cause serious

losses.

The other aspect of this excuse, which is most unfortunate,

is that with proper beforehand design efforts, sensitive infor-

mation can be protected on an otherwise simple LAN structure.

Conversely, it is impractical to contemplate the future addition

of encryption or some other form of protection to a LAN which

was not properly designed to handle such a capability in the

first place. 0

There is an interesting problem that evolves when design-

ers upgrade unclassified, nonsensitive information services

without giving similar capabilities to important and sensitive

functions. The effect of this is that the routine administra- 0

tive procedures in an organization become highly automated and

efficient, while the important planning, financial, logistics,

and personnel functions remain in essentially isolated and

frequently manual environments. When this situation arises

there is a very dangerous tendency to go ahead and use the

unprotected LAN facility to "get the job done."

For all of the above reasons it is important that the

security/sensitive information handling requirements of a

particular installation be considered up front prior to the

establishment of the specifications for a particular local

area network.

C. SECURITY-RELEVANT CHARACTERISTICS OF LAN

A local area network connects communicating devices that

are not far from each other but where there is a definite

physical separation ranging from a few dozen meters to a few

kilometers. In most cases a single coaxial cable replaces an

entire network of conventional wires and permits simultaneous

III-6

9

two-way communications among communicating devices. Frequently

this system will support hundreds of high-speed digital channels

with text, data, and in some cases voice, and image signals.

Many of the characteristics of LANs that make them highly

attractive from an installation ease and flexibility point of

view have very negative connotations from a security perspective.

Some of these characteristics, excerpted from an excellent

reference text on LANs, "Designing and Implementing Local Area

Networks," (Ref. 12), will be described now.

In a typical coaxial broadband local area network, radio

frequency (RF) signals are transmitted over trunk and feeder

lines to drop cables which provide links to the user outlets.

The trunk is usually a protected cable employing rigid aluminum

shielding with a bending radius ten times the diameter of the

cable. The feeder cables and drop cables are much smaller and

more flexible.

Taps can be placed anywhere along the feeder cable to

provide drop cable connections to outlets. The drop cables and

feeder cables. typically incorporate foil and braid shielding to

minimize radiation leakage among cables in close proximity to

each other. Directional couplers divide or combine inputs and

outputs of RF signals. They are used to ensure that signals

being transmitted from any network device will be routed only

to the head end device. One of the key advantages of using

coaxial cable in systems like this is its ability to support

multiple taps. With the isolation provided, each outlet stands

alone, and the connection or disconnection of a user device

has no effect on the operation of the overall system. Broad-

band coaxial systems employ components that are readily avail-

able from community antenna TV (CATV) or cable TV systems.

These systems are characterized by their ease of connecting

new terminal ports simply by adding a tap. It is also easy to

move devices anywhere on the network since all devices receive

all of the information transmitted over the network.

111-7

As can be seen by the above discussion, most of these

features provide advantages for the easy installation and

operation of a system. But many of them, in particular the 0

ease of attaching taps in an undetected manner and the fact

that all information passes each point on the network, con-

stitute serious concerns from a security point of view.

Fiber optics is frequently proposed in lieu of coaxial 0

cable in LANS. The characteristics of fiber optics, which are

its principle advantages, include higher bandwidth, immunity

to electrical interference, lack of electromagnetic radiation,

and smaller physical diameter characteristics. However, fiber

optic systems are more difficult to tap, and amplifiers and

related equipment are frequently muc- more expensive.

Another form of local area network that is evolving in

some arenas is the computer-based private branch exchange

(PBX). Such systems provide data connectivity for terminal-

to-host traffic in addition to the normal voice service. The

advantage of such a service is that it makes use of the exist-

ing wire plant, which minimizes the changes to existing facil-

ities. The disadvantages include relatively low bandwidth and

difficulty providing host-to-host high-performance links. From

a security viewpoint, this type of service is little different

than that associated with normal telephone service. Because

this form of LAN implementation is not particularly useful in

systems like WIS, it will not be considered further here.

D. PROTECTION MEASURES

This section will describe a series of protection measures

that are available for local area network security. It includes

an analysis of the overall security of the information system

of which the LAN is a part. In this context the physical,

administrative and personnel security measures for the LAN are

closely linked to those procedures associated with individual

1
III-8

S

B

terminals and host computers which comprise the total system.

The local area network must receive the same protection measures

afforded to the highest level of sensitive information contained

in the overall system.

In the case of WWMCCS, for example, the highest level of

classified information is Top Secret and all terminal, host,

and communications functions, including the LAN, must be pro-

tected to that level. This implies that all personnel must

have Top Secret clearances, that all terminals and hosts must

be located in Top Secret cleared facilities, and that all communi-

cations must be contained either within Top Secret facilities

or be protected via military-approved cryptographic devices

for handling Top Secret information. Once the WIS system

evolves to controlled mode with some users only cleared to

Secret, the terminal facilities for those users need only be

cleared for Secret information. But, to the extent that the

communications linking them may also contain Top Secret infor-

mation (i.e., on a local area network), those communication

links must continue to be protected to the Top Secret level.

There are, in general, two ways to protect a local area

network system for handling classified information. The first

is to physically contain the transmission media (e.g., coaxial

or fiber optic cable) in a protected wire line environment.

The second approach is to provide some form of encryption for

the communications passing over this LAN media. Each of these

will be considered in detail now.

Protected wire line systems typically are quite expensive

to install and they have limited flexibility for attaching

additional feeder circuit and drop lines. These systems range

from simple welded conduit for use with information with a low

level of sensitivity to sealed, pressurized enclosures which

have automatic pressure loss detection devices to alarm in case

the conduit is broken, accidentally or maliciously, to systems

where the conduit must remain under visual scrutiny of security

officers at all times.

111-9

In many cases buildings which were designed for handling

sensitive information via communications media will have con-

duits built into the floor or ceiling which will serve as pro-

tected wire line environments. In these cases it is merely

necessary to extend the drop line from conduit to the actual

communicating device via shielded coaxial cable or similar means.

The functions of the protected wire line are to preclude tamper-

ing, wire tapping, or line monitoring via direct connection

or through the detection of compromising emanations (TEMPEST).

For unclassified information it may be sufficient to

enclose the LAN transmission media in an aluminum conduit with

sealed connections. This type of protection is frequently

provided just for the physical protection of the cable from

being damaged or broken through normal building use. The

requirements for additional protected wire line measure for

protecting classified information are detailed in individual

service security regulations and specifications. For new

installations, the inclusion of a protected wire line facility

is not nearly as significant an expense as in older facilities.

The second alternative for protecting classified information

on a LAN is to provide some form of encryption to the information.

Once encrypted, the information is considered unclassified by

virtue of having been subjected to the encryption algorithm.

Anyone intercepting the encrypted information would have great

difficulty in obtaining the sensitive information contained

therein.

The simplest form of encryption which is normally provided

to unprotected communication channels is link encryption, in

which the data is encrypted as it enters the transmission

medium (i.e., just after the modem device). Unfortunately, due

to the high bandwidth of all LAN media, link encryption is not

practical. In the case of baseband systems, data rates of 2 to

10 Mbps are beyond the capability of present encryption devices,

except for very expensive equipment. Broadband systems which

III-10

use even higher analog signals are impractical to encrypt.

Given that a pair of link encryption devices would be needed|0
at each outlet of the LAN, the cost of such a service quickly

becomes excessive, even if equipment were available today.

A second form of encryption protection for a LAN is the

use of end-to-end encryption. In this case the information

to be transmitted is encrypted prior to being entrusted to the

network and remains encrypted throughout its transmission,

being decrypted only upon exiting the LAN interface device.

This is a more practical form of protection both from a data

rate and cost point of view. The data rates are those of the

individual communicating devices and not the aggregate rate of

the transmission media itself. In this case the number of

devices needed corresponds to the number of drops or communi-

cating devices on the LAN.

The basic problem with this approach is: there are no

devices available with this capability. The Blacker program

is attempting to provide this type of service on a wide area

network such as the Defense Data Network (DDN). Assuming it

can be made to work there, it is reasonable to assume that

one could extend this capability out to a LAN connected to the

DDN. However, initial Blacker devices for the DDN are not

expected until 1988 and probably will not be available in

production quantities until the early 1990s. The present

contract does not call for development of LAN devices although

such devices are anticipated to be needed shortly after the

initial DDN devices.

End-to-end encryption provides protection for the data

being transmitted, but address information, indicating where

that data is to be sent on the network, must be kept in the

clear. This dual function for the encryption device makes it

much more complex than a simple link encryption facility. In

addition, some form of key distribution center and access con-

trol mechanism is required for anything other than the simplest

III-ll

111-11

>1

form of end-to-end encryption. Unfortunately, the procedures

for doing key distribution are not fully understood. They are

being developed as part of the Blacker program but will not be

available in LAN environments until the early 1990s.

While encryption and, in particular, end-to-end encryp-

tion shows real promise for providing excellent protection

for sensitive information on a LAN, the difficulties to be

overcome prior to availability coupled with the cost of the

devices themselves, including the key distribution and access

control mechanisms, indicated that it may be eight to ten years

before this type of protection will be generally available.

Therefore, anyone considering LAN service before that will have

to provide protection via some form of protected wire line

facility. --

E. TRUSTED LOCAL AREA NETWORK CAPABILITIES

Because of the problems inherent in applying encryption

techniques to LANs and the apparent delay in having such

resources available for the next five to eight years, system

designers have turned to other means of providing security.

One approach which is straightforward but very limited in its

operational characteristics is to install a separate physical

LAN for each level of sensitive information. While this

approach is immediately available using standard components,

it has the severe disadvantages of requiring considerable

duplication of equipment, extensive additional physical con-

struction of protected wire line facilities, and complex

operating procedures to ensure that the user employs the

proper terminal and LAN for the appropriate level of security.

In systems that involve a reasonable range of sensitive infor-

mation, this operational complexity may pose such a large

security risk that even this low technology approach may be

unacceptable.

111-12

°S

Several years ago consideration began to be given to

finding means to assure that at least the addressing portions

of the LAN could be made highly reliable. If the LAN must be

enclosed in a physically secured, protected wire line conduit

anyway, and if some means could be found for ensuring that the

LAN would deliver the information to the proper destination

without modification, then simultaneous operation of a LAN with

multiple levels of sensitive information could be achieved. The

term Trusted LAN was applied to this concept and several studies

were initiated to evaluate its feasibility (Refs. 9 & 13).

The simplest form of this trusted LAN is shown in Fig.

111-2. In this case the LAN is considered multilevel secure,

that is, capable of interfacing terminals and host computers

that operate at multiple levels of classification. The LAN -

interface unit is "trusted" to properly label information

entering the network as to its sensitivity and to ensure that

information is delivered from the network to destinations at

the same sensitivity level.

TOP SECRET SECRET UNCLASSIFIED MULTILEVEL

HOST HOST HOST HOST

MULTILEVEL LOCAL AREA NETWORK ...

TOP SECRET SECRET UNCLASSIFIED

FIGURE 111-2. Simple multilevel local area network

Source: Ref. 13

111-13

0

Early analyses of this approach concluded that a trusted

interface unit would have all of the development and verifica- .

tion complexity of earlier attempts to build trusted general

purpose operating systems. However, more detailed examination

shows that much of the complexity that is inherent in trusting

such operating systems comes from the need to enforce rather

complex security policies that allow users at certain levels in

the security hierarchy to read and write data at their present

level, to read but not write data at levels below their present

level, and to (theoretically at least) write but not read data

above their present level. This security policy was first

stated-mathematically by Bell and LaPadula in 1974 and remains

the basis for policy enforcement in operating systems today.

However, examining the function which is being performed by -

the LAN in these scenarios shows that the LAN does not need to

enforce a policy as complex as Bell and LaPadula. Rather, the

LAN should be viewed as a logical replacement for a bundle of

wires directly linking every terminal to every host computer --

in a local area. Under this view, the trusted LAN must be

shown to enforce the much simpler policy stated above of

properly labeling information on entry to the network and

ensuring delivery only to destinations approved for handling

similar sensitive information.

It is interesting to note that the fear of the complexity

of trusted LANs that drove many to favor the use of end-to-end

encryption techniques can be misleading, since in order to

handle properly the bypassing of address information in the

end-to-end device, a degree of trust equal to or exceeding that

of the trusted LAN is required. It is just this issue that is

at the core of the difficulty being faced by the Blacker program.

Figure 111-3 is a more complex situation involving several

physical environments at different security levels with both

trusted and untrusted interface units, encryption between the

physically protected LANs and host computers operating at all

levels of classified information.

111-14

- - - - - - - - --

TI

II

r- --- -- P3--;ET --- isf

I HOST
HO TCa* TIU TU

IR" UNTINEFC NT

___H6000 HOST OR
LAN CABLE MHOST USER TERMINAUSUI3SCRIBERI

CLASSIFIED ENVIRONMENT \7~?BRIDGE. HALF-BRIDGES
BOUNDARY

FIGURE 111-3. Full Multilevel Local Area Network
Source: Ref. 13

111-15

In a report entitled "Cable Bus Applications in Command

Centers - Security Issues" (Ref. 10), Robert Shirey describes

the WWMCCS LAN requirements and details the use of encryption

in considerable detail including an analysis of the potential

use of public key cryptography. This report concludes that
"multilevel secure LANs can and should be built using Blacker

end-toend encryption," while cautioning that unless action is

taken soon (the report date is February 1982), "it is almost

certain that the cryptors will not be available when needed."

The report acknowledges that local area networks will need

both encryption and trusted software.

A second report on this same area, "WIS Local Area Network

Issues," by William H. Blankertz and David A. Gomberg (Ref. 9),

describes the LAN security issue in the following terms:

"By far the greatest risk in the development of WIS

LAN is the requirement that the LAN provide multi-

F.. level security. It is the expressed opinion of many

WWMCCS users that the WIS LAN will be of little

utility without MLS. Yet there is no assurance that

MLS is achievable; there are no clear-cut solutions

to the technical problems that MLS poses. A successful

approach to MLS will most likely require features from

encryption, trusted software and physical protec-

t ion."

"The LAN security architecture intersects with almost all

aspects of the WIS design. ... Problems such as cryptor

availability and lack of adequate tools to develop and

verify trusted software may cause considerable delay in

the MLS LAN implementation."

A description of the issues surrounding trusted LANs is

given in "Design for a Multilevel Secure Local Area Network"

by Deepinder P. Sidhu and Morrie Gasser (Ref. 13). Written

again from the context of the WWMCCS environment, this report

describes the multilevel secure LAN problem, and details the

111-16

_ _ _ _ _ _ _ _ _ __ o

characteristics of several alternative solutions. The report

then proposes several operational scenarios for the use of

trusted interface units, bridges, gateways, and guard systems.

The report proposes a series of incremental upgrades starting

from a single subnetwork operating in a system-high, physically

protected environment, expanding to trusted interface units -

able to support variable-level terminals and controlled and

multilevel mode hosts.

Figure 111-4, from the above report, shows a logical

structure for a trusted interface unit. The LAN medium, inter-Ie
face, Carrier Sense Multiple Access with Collision Detection

(CSMA/CD) and security processor components are all in the

physically protected areas denoted as RED. These components

all must be trusted to operate correctly. Assuming that this

can be done and that these components can be isolated from modi-

fication by other portions of the interface unit, then the

other components do not have security relevance and therefore

need not be trusted.

F. RECENT DEVELOPMENTS

There are a number of efforts underway to attempt to

resolve the local area network security issues. The one that

appears furthest along and of most potential value to WWMCCS

and other similar programs is the System Development Corpora-

tion (SDC) MIL/INT product line which was first described on

September 30, 1983 and is expected to be announced formally,

with prices and quantity delivery, before June 1984. This

local area network system (Fig. 111-5) is a broadband cable

with a 2-Mbps signalling rate. The SDC product line consists

of eight devices ranging from host front ends and terminal

concentrators (for both the LAN and the Defense Data Network

(DDN)) as well as intersite, interchannel, and DDN gateways

and a network control center.

111-17

P._ _

p.-)

CL0

100

Ij 0
Iw

100
L.s.

z rm0 ..

0 so 0
0 0 0

.4

0

I- z

I-I

Cw * w

I I 0

I 01

zz

~~14

LE
I

CflU

3 0'

i -' U,2

-j k-H

ccH

111-19

0

The devices are designed to work specifically with the DDN

and therefore implement the full set of DoD Standard Protocols

including the Transmission Control Protocol/Internet Protocol

(TCP/IP), the Network Virtual Terminal (NVT) protocol, and the

Host Front End (HFE) Protocol. One of the major advantages of

this LAN is the ability of any host or terminal to easily access

other subscribers on this net or on other nets across the DDN

through the use of these protocols.

The other interesting characteristic of this soon-to-be-

announced product is a series of security-related enhancements

that will implement the features of a trusted LAN.
In the first

step, a label-checking mechanism will be added to the BIU at

exactly the place where the security processor is located in

Fig. 111-4. Information entering the network from a user ter-

minal or host will have its security label (the security field

in the internet header) checked to ensure that it is appropriate

for the security level of that site. Information leaving the

network will also be checked for appropriate security level
0

prior to being allowed into the BIU for processing.

The initial label-checking mechanism is being implemented

in firmware immediately adjacent to the CSMA/CD unit to minimize

the need to verify its performance and to trust other portions

of the BIU. As a result there is limited flexibility in identi-

fying large numbers of possible communities to which a terminal

or host may belong. Future expansion of this mechanism, includ-

ing its implementation on an Intel 80286 processor board, as

part of a planned performance upgrade, will allow much more

granular security-level identification.

SDC is actively promoting the MIL/INT LAN for use in WIS

and other DoD environments. A version of MIL/INT is already

being installed in a DODIIS environment. The combination of

support for the complete DoD protocol suite and the inclusion

of mechanisms for label checking make this product an important

addition to the available local area network capabilities. It

111-20

is possible that this product line and those of other manu-

facturers now in development may make possible multilevel

secure local area networks without requiring the long delays

anticipated in achieving end-to-end encryption for LANs. Our

study of these possibilities is continuing.

II1

111-21

r-

0.

IV. LOGISTICS NETWORKS

A. BACKGROUND

The study of the logistics data communications networks

began with a study of the logistics usage of the
AUTODIN I

system. This system was originally designed for logistics

usage but has subsequently grown to support other users.

Nevertheless, about 50-60% of its total usage was estimated to .
be by logistics users. We therefore contacted personnel in the

Army, Navy, and Air Force Logistics Commands to get estimates

of their usage and plans.

From our work with them, it is apparent that the AUTODIN
.0.

system is in danger of becoming overloaded with logistics

traffic. This conclusion is supported by such facts as the

overloading of the AFLC operation (by Thursday of each week

they often have a backup of 40,000-60,000 line blocks which

requires the entire weekend to run off), the running backlog

at the Presidio, and problems with Battlecreek DLA overloading

the system. JCS concerns about the impact of logistics traffic

during crisis situations and the resultant effect on Command

and Control activities increases the need for immediate action.

The Services also reported a need for future service in

excess of what can be projected as reasonable for AUTODIN.

(The Air Force predicts a growth of 15 percent a year, for

example, and the Army 20 percent a year.) Since logistics

traffic is currently estimated at 50-60 percent of AUTODIN

traffic, this will result in a disproportionate share of

AUTODIN traffic going to logistics users.

IV-1

In order to define further the traffic flow, meetings were
then held with DIA personnel. In order to give some feeling
for DIA usage, Figure IV-l shows some DIA transmit and receive

statistics.

In addition, there is a large volume of data transferred

by mail and courier. This data was, at one time, principally

punched cards but is now transported primarily on magnetic

tape. Many users would prefer using telecommunications but the

lack of availability of lines, automated systems, and cost has

led to the slower mail and courier method.

Much of this data is transferred for contingency operations

and this data has been broken out as it becomes most important

from a mobilization viewpoint. Figure IV-2 shows some figures

for the types of data transfer, giving an idea of the volumes

involved. As an example, the New Cumberland Army Depot generates

on magnetic tape enough data to fill a 50-kb line full time for

22 days (of 24 hours) in each quarter. The contingency data

alone would require about 5 days (of 24 hours) for transfer at

50 kb each quarter.

If the system involved were much more interactive, then

the total data transferred could be reduced, since many file

transfers are now being made and queries could replace some of

these; however, it is clear that a large volume of data is F
lurking in the background in this form in addition to the data

now being transferred using telecommunications.

Further investigation of the source of the AUTODIN problem

specifically was then made. The majority of the traffic was

found to center around two DLA sites, the DAAS at Gentile and

the DAAS at Dayton, Ohio. Some representative figures for

those sites can be found in Figure IV-3. When a requisition

for materiel is made, the AUTODIN system is used and the order -

is sent to one of the two DAAS sites. The DAAS site then

determines which inventory control point has jurisdiction and

sends the order to that inventory control point. Inventory

IV-2

L -

C.4 so
0, N r4C4 'o&

0-., Irv 4 ,

U~~~C @ e4 el.4t

~i F ,4 N Al'A NO

AU IW -W 6n",I

ml~~ InMeO

W" Wo, ml NCSW IAI,-8P

-4 ,a to N m. " P 4@4.V4UX

*,-,V m eg N -'. 4

-1 -s-
O W an4 m U@4- . N .WeN M-

0(9(
-

Lt. 9.C ki A Cg !90
.

NN N~49

ml~~~~1 NN7@@~ . 04

.
U40.4 ~ IV- 3

4 0*S c
C1

M~i~~4Ch in-mc4e-

Mat. .- IR

Saw

4)4

-octa l.- w g:v j~ ;4S0Ar

uS IV, 10.1 R B 3 W

-;ir..zj~aca.

0~ii

a4n XS SAO r-
r~~r-~ -4-4- -

*~ e -4 4 r sf m A .4P - ;i;V
-4~e eff9 ~ w' ~ iU w o>1

ml Sw~4N0V-c

0

SUMMARY: MAILED/COURIERED DATA PRODUCTS 1982

Magnetic tape data transmitted by mail or courier (Equated to
80 Character Records) per quarter:

Magnetic Tape (COOP) 30,240,000

Magnetic Tape (Regular) 12,513,187

Total Per Ouarter 42,753,187

Microfiche Per Quarter None Reported

Hard Copy: Pages Per Quarter None Reported

FIGURE IV-2a. Installation: Rock Island Arsenal (ARRCOM)

Magnetic tape data transmitted by mail or courier (Equated to

80 Character Records) per quarter:

Magnetic Tape (COOP) 128,600,111

Magnetic Tape (Regular) 14,263,277

Total Per Quarter 140,863,388 -4

Microfiche Per Quarter 1,525

Hard Copy: Pages Per Quarter 895,809

FIGURE IV-2b. Installation: Letterkenny AD (DESCOM)

Magnetic tape data transmitted by mail or courier (Equated to

80 Character Records) per quarter:

Magnetic Tape (COOP) 36,672,000

Magnetic Tape (Regular) 15,704,000

Total Per Quarter 52,376,000

Microfiche Per Quarter None Reported

Hard Copy: Pages Per Quarter None Reported

FIGURE IV-2c. Installation: Fort Monmouth (CECOM)

IV-5 _S

SUMMARY: MAILED/COURIERED DATA PRODUCTS 1982

Magnetic tape data transmitted by mail or courier (Equated to

80 Character Records) per quarter:

Magnetic Tape (COOP) None Reported

Magnetic Tape (Regular) 330,248

Total Per Quarter 330,248

Microfiche Per Quarter 492

Hard Copy: Pages Per Quarter 9,963

FIGURE IV-2d. Installation: Aberdeen PG (TECOM)

Magnetic tape data transmitted by mail or courier (Equated to

80 Character Records) per quarter:

Magnetic Tape (COOP) 19,040,000

Magnetic Tape (Regular) 4,724,788

Total Per Quarter 23,764,788

Microfiche Per Quarter 862

Hard Copy: Pages Per Quarter 20,557

FIGURE IV-2e. Installation: TSARCOM

Magnetic tape data transmitted by mail or courier (Equated to

80 Character Records) per quarter:
Magnetic Tape (COOP) 99,298,014

Magnetic Tape (Regular) 49,346,466
Total Per Quarter 148,644,480

Microfiche Per Quarter None Reported

Hard Copy: Pages Per Quarter

FIGURE IV-2f. Installation: New Cumberland AD

IV-6

Location AUTODIN Switch Send Receive

DAAS Dayton, Ohio Gentile "A" 138,356 47,847

Gentile "B" 167,419 49,092 .

Andrews 147,742 11,448

Ft. Detrick "A" 146,613 49,560
Ft. Detrick "B" 159,823 55,620

Hancock 186,086 19,609 5

DAAS Tracy, Calif. Albany 170,808 14,851

McClellan 158,395 18,994

Norton 165,608 224,021

Tinker 145,872 16,844

FIGURE IV-3. Defense Automatic Addressing System office (DAASO)
AUTODIN Traffic Loads for December, 1982

IV-7

_S

control then takes appropriate action on the requisition and

issues a materiel rebase order through DAAS to the appropriate

Depot, using AUTODIN. DAAS then forwards this requisition to

the appropriate depot; throughout this process copies of status

documents are routed to appropriate locations (customers,

Presidio, etc.). As a result, a single order may cause many

messages to be sent over AUTODIN.

The traffic generated by this system comprises about 30

percent of the total AUTODIN CONUS traffic.

Meetings were held with DLA representatives to determine

what could be done to alleviate future problems.

The situation is as follows. DLA has nineteen terminals

connected to AUTODIN at DLA Supply Centers/Depots and Defense

Contract Administration Regions. These terminals handle narra-

tive classified and unclassified messages and unclassified data

pattern messages from telecommunications centers and unclassi-

fied data from/to DLA Supply Center/Depot Data Processing

Installations. The Defense Contract Administration Regions use

magnetic tape for incoming and outgoing messages to the tele- O

communications centers.

B. STATUS OF DAAS SYSTEMS

At one time DLA (in 1983) decided to replace the AUTODIN

terminals, and a request for proposals (DLA RFP DLA 180083-R-

0280) was released to obtain bids for the replacement effort.

After some study and several meetings, this request for proposal

was withdrawn (in June). Instead, DLA is embarking on a plan

to modernize the telecommunications centers, which will include

updating the procedures used as well as the equipment used.

This should be cost-effective and also reduce message handling

exchange time between depots and inventory control points.

Our work primarily concentrated on the AUTODIN usage with

the intent of reducing this usage, but we (and DLA) have also

IV-8

0l

considered the DLA Teleprocessing Network (DLANET), Fig. IV-4,

and the Inter-Service/Agency Automatic Message Processing

Exchange (I-S/A AMPE) plans. At the present time we are help- 0

ing with the studies of the use of DDN for both the DAAS sites

and the DLANET, and this looks most promising. The Services

are also moving logistics traffic onto DDN and this appears

overall to be a movement toward integrated, interoperable •

systems which should have a significant cost benefit to DoD as

well.

The major actions in a plan which is now in the early 9

stages of implementation are as follows:

1. The request for bids for a new set of AUTODIN proc-

cessors for the DLA has been cancelled.

2. In the next 6 to 18 months DLA will study the off-

loading of AUTODIN traffic within 19 DLA sites and

the DAAS. A study is now in process for an implemen-

tation and installation plan to facilitate this action.

3. A plan to use DDN for this traffic will be studied -

and a design formulated.

4. The largest AUTODIN users to the DAAS sites have been

targeted for future offloading of traffic. DDN inter-

faces and DDN usage for this purpose are being 0 .

studied.

C. SUMMARY

The potential overloading of AUTODIN by logistics traffic

has led to actions on the part of DLA which could reduce total

AUTODIN CONUS traffic by 10 percent in the near future and,

with some support from the Services, by another 10 percent in

a two- to three-year period.

The first action in this process was recently taken by DLA

and consisted of cancelling a recently issued request for bids

IV-9

S

-1

.1

for new AUTODIN I processors. DLA may instead interconnect

their sites using either leased lines or DDN. This would reduce

the total traffic on AUTODIN by approximately 10 percent. The

second step would be to connect several of the largest Service

logistics users directly to the two DAAS sites using leased

lines or DDN, which will reduce total AUTODIN traffic by another

10 percent. The interconnection of the DLA sites should require 0

about one year and the connection of the Service sites another

year. These steps will also allow for future expansion, both

of traffic within DLA and of traffic between Service users and

the DAAS sites, which are the most used AUTODIN form of logis- 0

tics traffic.

R0

I -0

IV-10

I_

-- ~-----=-~ -~--~ -~ ---.- ---.-- -- -- - - .------ -- ~7~~~ - - - -

0

S
0

0-. 00a~

0 0*

S

C..'

0~
5-4 ---- 4

.0

Uw

~0

I
q.

H

H
rz4

S-A
-a-

Iv-11 -j

0A0

V. DATA BASES ON COMPUTER NETWORKS

A. DATA BASE PROGRAMMING LANGUAGES

1. Introduction

As observed in previous reports (Refs. 14 & 15), research

and development on data bases and programming languages has pro-

ceeded more or less independently. The integration of the two

areas has been somewhat haphazard and produced for practical

demand rather than from any initial attempt to find a unified
approach to both data bases and programming languages. In this

section, we shall investigate various attempts to integrate the

two, paying particular attention to data base adjuncts to Ada

and to efforts to integrate data base management with some

standard operating systems.

The interfaces between data bases and programming languages

can be classified into a few distinct groups.

0 Subroutine Interfaces

This is the traditional method, and is to be found in the

early interfaces for Fortran and data base management

systems. Fortran-Codasyl interfaces are built in this

way, as are certain PL/I interfaces.

0 Preprocessors

The Codasyl-Cobol interface is an example of this. The

programming language is extended and a program is first

fed through a preprocessor that resolves data base names

and generates the appropriate subroutine calls. The pre-

processor may also do some limited type-checking. A more

recent example of this kind of interface is Adaplex,

described below.

V-1

S Query Languages

Most query languages are not full programming languages

in that they are limited by one or more of: inefficiency,

inadequacy of their data type system, lack of adequate

forms of procedural abstraction, and inadequate operating

system interfaces. In spite of these criticisms, a good
0

query language can be used to generate most queries much

more easily than through a programming language interface.

Some query languages are being developed to the point of

being adequate interactive programming languages.

* Embedded Languages

Given that a query language is desirable, but inadequate,

a common solution is to embed the query language in a

full programming language. The query is passed through

the host language (often as a character string) and the

results of the query are returned as a file or as some form

of query. Embedded languages are usually appropriate only

for conveying a more complicated structure than a relation -

to the host language.

0 Modified Languages with a Built-In DBMS

A prime example of this is Pascal/R. A Pascal compiler

was extended to include a data-type relation and the

necessary operators on this structure. The compiler was
modified substantially to include an "internal" data base

management system.

* Special-Purpose Languages
Plain and Rigel (Refs. 16 & 17) are both examples of new

languages that have been developed especially for data

base work. There are also a number of research efforts,

Taxis and Gallileo, for example, to produce languages

whose purpose is to understand the relationship between

data types and data models.

V-2

S

* Interactive Languages

Although not in the traditional sense of data base program-

ming languages, the interactive environment of these lan-

guages is such as to make them quite usable for (small)

data base work. The idea of a work space is a particu-

larly simple method of dealing with "persistent" data.

2. Data Base Extensions for Ada

Although Ada was developed originally as a language for
"embedded systems," its type system and control structures,

both of which are in the tradition of Pascal-like languages,

make it as suitable as those languages normally used for data

processing. Ignored in the design of Ada, data base interfaces

are now seen as being highly necessary for the success of that

language, especially as a DoD standard. One attempt to provide

this, which we have already examined, is Adaplex. This language

provides some added control structures and extends Ada's data

types to handle standard record-oriented data processing problems

in a fashion similar to that provided in most data base query

languages. In addition, the underlying data model provides

greater representational power than most existing data base

management systems. Later in this review we shall argue that

the augmented data types (Set and Entity) are not compatible

with the other data types in Ada. Strictly speaking, they are

not data types at all. This has two important drawbacks.

- Only a limited number of Ada types may be components of

Adaplex's added types. These are sufficient to provide

for many business-oriented data processing needs, but

do not allow for many extended applications. For

example, Ada arrays cannot reside in Adaplex data

bases; therefore, data bases with any kind of engineering

application are unlikely to be built in Adaplex.

v-3

- Since Adaplex types are not "first class" Ada types,

they cannot serve as parameters for other (generic)

Ada objects. This means that the Adaplex sub-language 0

cannot be extended to handle more complicated applica-

tions. Instead, data must be mapped into some other

Ada data structure before the programs can be written.

What other approaches are there to the problem of adding a

data base component to Ada without further increasing its

complexity or violating its type system? Before answering this

we should observe that any data base management system requires

at lease one "bulk" data type such as relation, record class

and set (Codasyl), set (Adaplex), etc. The.only bulk type

provided by Ada is ARRAY, and this (on its own) will not be

appropriate for data base work. The crux of the problem is

therefore to provide a bulk type (a) which can be simply -

combined with other types in the language and (b) whose objects

can be made persistent. This last point means that, like

objects in the data base management systems mentioned above,

they should be capable of persisting from one invocation of a

program to the next and should be shareable by more than one

program.

We shall briefly examine four other strategies for providing

the necessary data base adjunct to Ada. They are:

1. Providing low-level support for data bases, through

the appropriate packages, but leaving the data base

construction to the programmer.

2. Building direct, but type-checked, interfaces to 0

existing data base management systems.

3. Providing persistence directly to Ada data types.

4. Using an approach similar to that of Adaplex, but

using a different data model.

While the problem of persistence has not been tackled for

Ada, the problem of sharing is dealt with extensively. Program

and structure declarations are shared through packages, while

run-time sharing of information among processes is performed _

V-4

- •i • . - o- --

through tasks. We shall concentrate primarily on the exploitation

of the packages for data base work, but will discuss briefly

the use of tasks for handling concurrency problems. 0

a. Low-Level Support. At a physical level there is remark-

able uniformity among data base management systems: they provide

methods of indexing and methods of storing sequences or sets of -

uniformly typed objects. Without worrying about the higher or

"conceptual" issues involved, let us look at how one might

* provide persistent versions of the appropriate basic data

structures within the language.

Viewing an index as an abstract data type, the basic

operations required are:

- Creation of an index

- Insertion 0

- Deletion

- Look-up

- Generation of all the key-value pairs stored -

- (If appropriate) generation of all the key-value

pairs stored whose keys lie within a given range.

The last of these is appropriate to B-tree methods of indexing

but not to hashing techniques. In view of the fact that we

want to be able to generate all of the key-value pairs stored,

we may use the same technique to store a sequence simply by

having the key consist of the objects we want to store and the

associated value a "unit" object, whose value is of no importance.

This would provide a (possibly inefficient) method of storing

both sets and sequences depending on whether key values are

constrained to be unique.

A typical package declaration for indexing structures

might be:

V-5

• . /

generic

type VALUE TYPE is private;

type KEYTYPE is private:
with function "<"(KI, K2: KEYTYPE) return BOOLEAN:

--required for range searches

UNIQUEKEY: BOOLEAN;

package INDEX is

type CURSOR is private;

procedure INSERT

(in K: KEY TYPE: in V: VALUE TYPE;

out SUCCESS: BOOLEAN); p

procedure DELETE

(in K: KEYTYPE; out SUCCESS: BOOLEAN);

procedure LOOKUP

(in K: KEYTYPE; out V: VALUETYPE

out C: CURSORTYPE; out SUCCESS: BOOLEAN);

procedure NEXT LOOK UP

(in K: KEY TYPE; in out C: CURSOR TYPE;

out V: VALUETYPE; out SUCCESS: BOOLEAN);

procedure FINDFIRST

(out K: KEY TYPE: out V: VALUE TYPE;

out C: CURSOR TYPE: out SUCCESS: BOOLEAN):

procedure FIND-NEXT

(in out C: CURSORTYPE; out K: KEYTYPE;

out V: VALUE-TYPE; out SUCCESS: BOOLEAN);

private

type CURSOR TYPE is...

end INDEX;

V-6

S_

There are many ways this declaration could be simplified

and more in which it could be made more complicated. Some o-

the reasons for this choice are given here. 0

1. The types KEYTYPE and VALUETYPE are parameters of the

generic package; an example of KEYTYPE would be SSTYPE'

(the declared type for social security number) and

EMPLOYEE. UNIQUEKEY indicates whether keys are to be

unique.

2. CURSORs are needed for traversing sequences. They will

be needed in range traversals, traversal of the whole

table, or traversals of all records with the same key in

cases in which the key is not unique. We could associate

a single cursor with the package (rather than with the

individual procedures) and the various procedures could

work-by side-effecting this variable. This causes

confusion when more than one sub-programs are interleaved

and each requires access to the table (Ref. 15.)

3. LOOKUP and NEXTLOOKUP are both needed when there is

more than one value for a given key. -

4. A boolean value SUCCESS is used to indicate the success

or failure of each operation. An alternative approach

for LOOK UP would be to have an access type (access

VALUETYPE) returned. This would be NIL if the LOOKUP -

failed. Unfortunately, this approach will require the

package or the Ada run-times to support the appropriate

storage management.

Given a particular KEYTYPE and VALUETYPE, this package

may be generated and used as a separate compilation units.

This may now be used by a number of "applications" programs in

much the same way that a data base management system is used.

Note that we are assuming that there is exactly one "data base"
for each package generated, and that we are assuming that the

data associated with that package are persistent.

If an instance of such a package is to be a separable, per-

sistent, object, there are certain restrictions that must be

V-7

-- J

placed on what KEYTYPE and VALUETYPE may be. There must be no

direct references (through access types, say) to other objects

available to the program. Thus, any type constructed from the 0

basic Ada types and using records or arrays is allowable; how-
ever, pointers cannot be used, nor can task types. In addition,

i: equality (at least) must be computable for KEY TYPE values.

Types such as reals (for which equality is undecidable) cannot

be allowed.

A more yeneral point is that a real data base implementation

may require the instantiation of, say, 100 such packages.

These are independent of one another and the problem of sharing

data must be approached. Should data in two such packages need

to be related, the only solution is to have explicit (atomic)

component data types exactly in the same fashion as relational

data bases use explicit, printable, types to indicate related

data. In fact, mapping from higher-order data models to first

normal form relations often requires the introduction of such

fields. The ostensible independence from run-time, dynamic

structures makes it possible to treat each component as a

separable, copyable unit.

Some of these problems are mentioned under more general

persistence techniques. Note that we have not dealt with

concurrent access to such a data structure. .

It is obvious that a generic persistent set type could

be built subject to the same constraints on sharing.

b. Ada Interfaces for Existing DBMSs. This is probably the

most important need for the environments in which Ada will be

first used. It will be impossible to restructure data bases and

entire suites of applications programs in order to mesh with the

(as yet non-existent) data base requirements for Ada. The best

that can be hoped for is that reasonably simple interfaces can

be built between Ada and existing data bases and that these will

be more easily rewritten or restructured than existing programs

when the data bases themselves are ultimately restructured.

V-8

There are two general approaches to this problem. Both

are implementable without the need for major additions to the

Ada language and without complex preprocessors to implement

these additiions.

1. Embedded Languages. The idea here is to take an existing

data base query language (SOL for example) and have

within Ada a processor that can call upon this language.

The query is handed to the query language as a processor

and what is returned is a mechanism for bringing the

results of this query back into the host language (Ada).

The result is usually a sequence of some sort and can

be traversed using the cursor mechanism described in

the previous sub-section.

The only open question is how the returned results are .

to mesh with the type system of Ada. A trivial solution

is to send the results (usually records) back as char-

acter strings--perhaps with format information. A

better approach is to have them returned as Ada records

so that the programs may be properly type-checked. For

this, some sort of automatic generation program for type

declarations is required. Note, however, that we run

into a predictable problem with dynamic versus static

type number of data types: by changing the query

(the contents of a character string) one can change

the type of the result. This is foreign to the

principles of strong typing.

Embedded systems are most appropriate in dealing with

systems that always return "flat" results--e.g., the

relational systems.

2. Direct Interfaces. These are appropriate when the

underlying data base has a low-level data manipulation

language available that deals with individual records

or references rather than bulk entities such as relations.

Typically, such an interface is provided for Codasyl

systems (although the embedded language approach could

V-9

. .

also be used.) Again, the problem is that of makiny

the data base types agree with appropriate Ada types.

For Codasyl at least, the problem is simpler in that S

the (record and set) types are fixed in advance and

it is possible (Ref. 18) to use Codasyl Data Definition

Language to generate automatically an appropriate set

of Ada type declarations and procedures. This is a I

considerable improvement over most existing Codasyl

programming environments in which data base queries are

not type-safe and run-time type violations with disas-

trous consequences are common.

c. Building Persistence into Ada. The idea that most data

base work can be accomplished by having programming languages

with persistent objects (i.e., objects that persist from one

invocation of a program to the next) is relatively new (Ref.

19). In Ada, for example, packages may be shared by several

programs--i.e., code and type declarations are shareable and

persist, but the objects themselves are associated with a

particular invocation of the program. Ada itself has no

persistence; however, the packages for i/o and the generic

package above did provide persistent stores by side-effectiny

a structure that was "foreign" to Ada's run-time store. S

The question is, therefore, why any Ada object cannot be

tagged as persistent? The problem is with objects that refer

to other objects. We cannot allow a persistent object to refer

to a run-time object, for the reference will not remain valid .

in the next invocation of the program. One solution is only

to allow a subset of types to give rise to persistence. The

restrictions are much the same as those that would normally be

placed on the contents of Pascal files. Another solution is to 9

partition the store into components that can oe tagged (could

it be done automatically?) to indicate in which component they

are to reside.

V-1U

v-lu

Research on persistence is relatively recent and we do not

suggest that one can count upon availability of a "persistent

Ada" in the near future. Ultimately, however, persistent

languages will provide better solutions to data base problems

such as these.

d. Other Extensions to Ada. Adaplex presents one solution

to an integrated data base environment to Ada. Are there others?

we note that Pascal-R has provided a successful extension to

Pascal for the relational data model. To do the same for Ada

would involve restructuring the Ada compiler and extending the

language. It may be possible to adopt the same approach as was

taken with Adaplex and provide a preprocessor that translates

the language extensions. It is an open question as to whether

these approaches will be sufficiently simple and efficient to

be acceptable in the Ada programming environment.

e. Summary. Of the four approaches listed above, the

simplest and most likely to find immediate use are the first two:

construction of data base support packages in Ada and building

interfaces directly between Ada and existing data base management

systems. The second two approaches, while they may provide --

better long-term solutions, should not be counted upon in the

near future to provide reliable data base support. The problem

of providing interfaces to existing data base systems will

prove most important in the short term.

An area that we have yet to investigate in the context of

Ada is concurrent access to data bases. It is possible that

Ada's mechanisms (tasks) for concurrent programming could also

be exploited for this. However, the concurrency mechanism in

Ada is based upon message passing, while that used in most data

base systems is based upon shared storage. The examination of

the relationship will involve a consideration of what role

operating systems should play in concurrency control.

V-li

:~0

3. Examples of Problems in Integrating Data Bases with Program-
ming Languages

In order to look at other languages and in order to illus- S

trate some of the problems associated with integrating data

bases and programming languages, we shall work through some ex-

amples. We shall investigate the same problem cast in a number

of different languages, both in order to understand the type or ,

schema declarations and in order to see how the control differs

in the various languages. For the most part these languages are

relatively new or are experimental. They are indicative of the

research that is taking place in this area.

The problems we shall look at are derived from a standard

bill-of-materials scenario. In a manufacturing plant, parts

are assembled from sub-parts and those sub-parts in turn have

sub-parts. Note that not only does each part have a set ot sub- 9

parts, but each type of sub-part may also be a sub-part of

several different super-parts. Thus the sub-super relation-

ship is a many-many relationship on parts, as seen in Fig. V-1.

n m

FIGURE V-1. E-R schema for part data base

V-12

Associated with this relationship may be a number, i.e., the

number of sub-parts of a given type that are involved in the

manufacture of a super-part of a given type. To capture this S

*information, a different representation is needed, both of

these being entity-relation diagrams (see Fig. V-2):

PAR

u B
S U B

n n

LINK •

FIGURE V-2. E-R schema for part-link data base

a. Daplex. The language Daplex (Ref.20) is not a full O
programming language. It is designed to capture a large number

of data base applications and, when it fails to do this, it

is supposed to be used as a "sublanguage" of a full programming

language. It is the basis of the Ada extension "Adaplex" that 0

we shall examine below.

Daplex exploits the functional data model (Ref. 14). The

term "part" is overloaded to refer both to an entity type

(conventionally a record type) and to refer to the niladic O

function that generates all objects in the data base off that

entity type. The first line of Fig. V-3 declares this. Sub-

sequent lines declare that name, color, and weight are (single-

valued) functions from this entity type to the appropriate atomic

type (STRING or INTEGER).

The declaration of sub and super as multi-valued functions

(i.e., functions whose value is a set of objects) from part to

part follows in the next two lines. The declaration of super O _

V-13

•S

constrains it to be the inverse function of sub. Thus, any up-

date to the function sub is reflected in a change to the func-

tion super.

This declaration as it stands is a gross simplification of

a real schema. It is, however, the one we shall use for our

examples. We have noted that a more faithful representation of

the data base would include information about the quantity of 0

each sub-part that is needed for the manufacture of a given

part. In this case, the declarations would look like the

standard Codasyl recursive structure; an intermediate "link"

entity would have to be introduced (see Figs. V-3 and V-4). .

declare part () ->> entity
declare name(part) -> string

declare color(part) -> string .
declare weight(part) -> integer

declare sub(part) ->> part
declare super(part) ->> link = inverse of sub

FIGURE V-3. A representation of the manufacturing

data base in Daplex

declare part () ->> entity P

declare link () ->> entity

declare name(part) -> string
declare color(part) -> string

declare weight(part) -> integer

declare subl(link) -> part

declare supl(link) -> part

declare qty(link) -> integer

declare sub(part) ->> link = inverse of subl
declare super(part) ->> link = inverse of supl

FIGURE V-4. An alternative representation of the

manufacturing data base in Daplex _

V-14

The programs we shall deal with will, however, exploit the

first schema declarations. The first of these is a simple

traversal of the data base to print out the names and weights

of the red parts in the data base (see Fig. V-5).

for each p in part such that color(p) = "RED" 1
do (print (name(p)); print (weight(p))l I

FIGURE V-5. Retrieval of all the red parts, coded in Daplex

In Daplex this resembles a standard iteration in a programming

language; the only difference is that name and weight are

treated as functions rather than record selectors.

The second, and more complicated problem, is to print out .

the names of all sub-parts of a given part. Daplex includes

a transistive closure operator that makes this particularly

easy. (It has been recognized that this is missing in most

of the relational query languages.)

define allsubs(part) ->> transitive of sub(part)

for the part such that name (part) = "WIDGET" do
for each p in allsubs(part) do

(print (name(p)); print (color(p))l

FIGURE V-6. A query in Daplex to print the subparts
of a widget

The first line of Fig. V-6 contains a definition of

allsubs as a transitive closure of the function sub (with

reference to the first schema). The second line contains a

"FOR THE" construct. This binds the (variable) part to a part .

entity provided exactly one such part exists satisfying the

subsequent condition. Note the further overloading of the term

part. With these definitions the query proceeds as before.

V-15

In this example, the two programs were remarkably simple.

It should be observed that had we wanted to print out not only

the sub-parts but also the quantities of each sub-part involved
in the manufacture of a given part, we would have had to use

the second schema. In this case, the sub-part query could not

have been so simply stated in the language. In fact, it is

possible that one would have to resort to an external or "host"

language in order to accomplish it.

In the subsequent examples, the sub-part query will not be

as simple. We will have to resort to explicit breadth-first

search in order to implement it. In this, a list (called LEVEL) .0

of current parts is kept. At each iteration, the set of all

sub-parts of parts in LEVEL is found. The parts on LEVEL are

added to an accumulator, ALLSUBS, and NEXTLEVEL is assigned to

LEVEL. The process is repeated until LEVEL is empty, i.e., all .

parts are "terminal*, i.e., not part of this manufacturing

operation. Also note that should the data base contain a cycle,

this and subsequent .programs will not terminate.

b. Pascal/R. Daplex was chosen as the first language

because of its relative simplicity and resemblance to a rela-

tional query language even though the underlying model was

not, in fact, relational. We now turn to a proper relational

system. Since the sub-parts query cannot be performed in most -

relational query languages, we shall examine Pascal/R, the
relational data base extension to Pascal (Ref. 21). Figure V-7

shows the type of declarations for this data base. Note the

introduction of a new type relation which is parameterized by - --

record type and key fields. Normalization demands that we

create two relations: PartRel and LinkRel to represent the

data base. The relation LinkRel can contain a quantity field,

and this declaration corresponds most closely to the second of -

the Daplex declarations. The data base declaration is a

special form of record declaration that only allows relations

as components.

V-16

type

Pnum = integer;

PartRec = record

pn:Pnum;

name:string;

weight:integer;

color:(RED,GREEN,BLUE)

end;

LinkRec = record

super, sub:

Pnum;

qty: integer

end;

PartRel = relation <pn> of PartRec; 0

LinkRel = relation ,super, sub> of LinkRec;

var

Manuf : data base

parts: PartRel;

links: LinkRel

end;

FIGURE V-7. Pascal/R data structure declaration
for manufacturing data base

That the data base declaration is special is illustrated

in Fig. V-8. It is used as a variable declaration in much the --

same way as a File is used in regular Pascal and is another

form of persistent data. There are, for implementation reasons,

restrictions on what can be placed in a relation. Arrays are

not allowed as domains nor, obviously, are pointers, files, or

other relations.

The code for the program is straightforward; it is illus-

trated in Fig. V-8. The foreach loop allows traversal of a

relation and is an addition to Pascal's repertoire of loop

control forms.
V-17

I program Redparts(Parts, Output)

type

Pnum =integer;

PartRec =record

pn :Pnum;

name: string;

weight: integer;

color: (RED,GREEN,BLUE)

end;

LinkRec =record

super, sub:

Pnum;

qty: integer

end;

PartRel = relation <pn> of PartRec;

ELinkRel = relation <super, sub> of LinkRec;

var

Manuf :data base

parts: PartRel;

links: LinkRel

end;

begin

with Manuf do

- foreach p in parts do

if p.color = RED then

Write(p.name, p.weight)

end.

FIGURE V-8. Pascal/R program to print the red parts

V-l8

Figure V-9 illustrates breadth first traversal of the data

base. The main variable declaration contains some temporary

(i.e., nonpersistent) relation declarations. Below this we see

a procedure that has relations as parameters. The purpose of

this procedure is to compute the next level of sub-parts in the

data base. The computation of NewLevel is essentially a double

join. The notation [each <rec> in <rel>: <pred>] is a notation

for a restriction, the set of <rec> in relation <rel> that

satisfy the predicate <pred>. The notation Some <rec> in <rel>:

<pred> is true if and only if some tuple (<rec>) in the relation

<rel> satisfies <pred>.

The main body of the program first computes the relation

consisting of all parts whose name is 'WIDGET'. This is used

as the first level. Calls to NextLevel compute the set (rela-

tion) of parts at subsequent levels. At the same time, each

level is accumulated in Allsubs. Finally, interesting domains

of this accumulated relation are printed out. Note the use of

:+ and := as operators on relations. Pascal/R has a number of

such operators, and many queries can be executed concisely

using them. They can also be performed through use of explicit

controls, such as foreach loops. It is quite common to find that

Poscal/R provides several ways of implementing a given query.

In general, the more concisely it is implemented, the more

chance there is of its being properly optimized.

c. Adaplex. There are certain similarities between

Pascal/R and Adaplex (Ref. 22). The former is an embedding of

a relational data type in Pascal; the latter embeds a functional

data model in Ada. Adaplex owes its extended type declarations

to Daplex, examined above. The type PART (Fig. V-10) is declared

as an entity type with various fields. Within entity declarations

certain additional field "types" are possible. Name, Pnum, and

Color are all treated as functions on this type. Sub and Super

are multivalued functions that map a part into sets of parts.

V-19

The Unique program Components(People, Output ,;

... {Type declarations as in Figure V-8)
var Temp, Level, Allsubs:PartRel; p:PartRec;

procedure NextLevel(OldLevel: PartRel; var NewLevel: PartRel);
(given a set of parts in OldLevel, it calculates the next A

subparts in NewLevel)

begin
with Manuf do

NewLevel := [each q in Parts:

Some b in links:

(q.pn = b.sub and
Some p in OldLevel: p.pn = b.super) 1;

end;

begin

with Manuf do

begin

Allsubs := [H; Level := [each p in Part: p.name='WIDGET'];

while not empty(Level) do

begin
NextLevel(Level, Temp); Allsubs :+ Temp; Level : .

Temp end;

writeln('The subparts of a Widget are :

foreach p in all subs do
Writeln(p.name, p.weight)

end

end.

FIGURE V-9. A Pascal/R program to print the
subparts of a Widget

V-20

_S

assertion makes Pnum a (logical) key for PART. The difference

between entities and records--apart from set fields--is that

with each entity type is associated a persistent extent. Thus,

the term PART defines both a data type and a set of objects of

that type (much as in Daplex).

This simple data declaration does not do justice to the

extended data model used in Adaplex. In particular it is pos-

sible to make certain entities sub-types of other entities

and to constrain the way in which these sub-types overlap. For

example, it is possible to define an entity type PERSON with

sub-types STUDENT and EMPLOYEE. The sub-types have all the

attributes (functions) defined on PERSON and some additional

ones as well. It is also possible to state whether STUDENT and

EMPLOYEE entities overlap (note the comparison with variant

records).

data base Manuf is

type COLORTYPE is (RED,GREEN,BLUE);

type PART; --Needed for recursive definition

type PART is entity

Name : STRING(l..20);

Pnum • INTEGER;

Color : COLORTYPE;

Sub . set of PART;

Super . set of PART;

Oty: INTEGER;

end entity;

unique Pnum within PART;

end Manuf

FIGURE V-10. The data definition in Adaplex
for the manufacturing data base

V-21

The code in Fig. V-li is almost self-explanatory and bears

several resemblances to Pascal/R and Daplex. The use of with

and use follows the syntax for packages. The use of by is a
convenient way of expressing the need for sorted output--some-

thing that is lacking in Pascal/R and many query languages.

The atomic ... end atomic construct specifies a transaction--a

section of code that must run, or appear to run as an indivisible

operation.

with Manuf;

use Manuf;

Print Widgets: atomic

for each P in PART where color(P) = RED by Name(P)

loop -

PUT(Name(P)); PUT(Weight(P)); NEW-LINE;

end loop;

end atomic;

FIGURE V-l1. Adaplex program to list the red parts

The use of a separate, nonpersistent set type is illus-

trated in the sub-parts query of Fig. V-12. Set types are
initialized, automatically, to the empty set. The construction

{<ent> in <set> where <pred>1 follows that of Pascal/R. include

into and exclude ... from are side-effecting union and dif-

ference operators. The difference operator can be used to empty

a set. Level is defined as a set of PART entities and Sub is

a function defined on a PART entity. The use of Sub(Level) is
an overloading of Sub to work on a set of entities. This is a

common and convenient abbreviation for what would otherwise

have to be specified by an explicit mapping or control form.

V-22

71

with Manuf;

use Manuf;

Subparts: "

declare

Level, NextLevel, Allsubs : set of PART; -- Initialized

to empty

atomic 0

include /P in PART

where Name (P) = "Widget"/ into Level;

while Level is not empty loop

include Level into Allsubs;

include Sub(Level) into NextLevel;

exclude Level from Level; -- empty the set;

include NextLevel into Level;

exclude NextLevel from NextLevel; -- ditto 0

end loop;

for each P in Allsubs loop

PUT(Name(P)); PUT(Weight(P)); NEWLINE;

end loop;

end atomic;

FIGURE V-12. Adaplex program to print the sub-parts

Pascal/R and Adaplex have a number of similarities in

design. While Pascal/R is a straight extension to Pascal and

is implemented by modifying the compiler, Adaplex is pre- 0

processed Ada. It is perhaps unfortunate that the Ada com-

piler could not be directly extended. Sets, for example, are

not really "first class" types. They cannot be freely mixed

with other types. Thus, one cannot have set of array ... or

array ... of set of This is particularly unfortunate in

a language that does allow the use implementation of generic

types (to which set types should conform).

V-23

d. Pascal-Codasyl. Lest is should be thought that these

examples are not an improvement of the status quo, let us

briefly examine a more conventional approach to the problem.

The following is a Pascal implementation of the queries against

a Codasyl data base. The code presented here is, in fact,
working code based on a Pascal-Codasyl interface (Ref. 18).

The advantage of this interface is that Codasyl records are

presented as Pascal types and the Pascal type-checker makes

sure that the programs are at least type-correct. In the

case of the sub-parts problem, type errors are the most common p
form of coding error.

The Codasyl schema is straightforward and warrants little

description. There are two record classes, Part and Link, and

two sets, Sub and Sup, that link these classes in an obvious

way. In addition, Partref and Linkref are reference types

for these record types and are used explicitly as Codasyl cur-

rency pointers.

In Fig. V-13 FINDFA PART is a procedure (provided by the

interface) to find the first part in the (default) area. FINDNA

PART is a find-next-in-area and differs from normal implementa-

tions in that it takes the previous currency as an explicit

reference. GET PART instantiates the record from its currency. -

Apart from this, the code is standard Pascal and should present

no difficulty.

The problems of implementing the sub-parts query are con-
siderably greater. Pascal has no built-in set manipulation

operators.* We must therefore develop these ourselves. In a

standard data-processing environment--using Cobol, for exam-

ple--these might be implemented using sort-merge techniques

in secondary storage. Pascal does not have generic types, so

that if we wanted to manipulate two distinct set types, we would

**It does, but Pascal sets are not general and will not do
for this application.

V-24

have to duplicate our code for the different types. The initial
declarations of Fig. V-13 are concerned with this. INSERT,

REMOVE, and CHOOSE will be adequate for our application. In
general, other set operations such as UNION and DIFFERENCE would

be desirable.

var Pref: Part ref; P: Part; S

begin

OPEN(MANUF);

FINDFAPART(Pref);

while PREF FOUND do

begin

GETPART(PrefP);

if P.COLOR = RED then WRITELN(P.Pname, P.Weight);
FINDNA PART(Pref,Pref) -

end

CLOSE(Manuf);

end;

FIGURE V-13. Pascal-style Codasyl query for red parts

The procedure Subwidgets in Fig. V-15 falls into three

components: the first to find the part(s) named 'WIDGET', the
second to find the set of subjarts, and the third to print out

fields from this. The first part proceeds similarly to the
previous example, and sets LEVEL to be the set of parts named

'WIDGET'. The outer loop of the second part recomputes succes-
sive levels of parts. In the inner loop, we first choose a
part from the current level. We then perform a down-and-up
traversal of the Link record class. These procedures draw upon
additional set manipulation procedures shown in Fig. V-14. _AL__

0 FINDFSSUP(PREF,LINKREF) finds the first link reference

in the SUP set owned by PREF.
0 FINDOSSUB(LINKREF, PREF1) finds the part-reference

owner of the SUB set of which LINKREF is a member.

V-25

9. -

* FINDNSSUB(LINKREF, LINKREF) finds the next member in

the SUP set. Note that, like FINDNAPART, the previous

currency is a parameter.

Finally, all the sub-parts are accumulated in ALLSUBS. We may

then use our own set manipulation procedures to traverse this

set and print the fields of interest. 0

typePartset ... (type declarations for sets of parts}

VAR Emptyset: Part set
-- r P

procedure INSERT(PREF:Partref; var PS: Partset);

procedure REMOVE(PREF:Part_ref; var PS: Part_set);

procedure CHOOSE(PS: Partset; var PREF: Partref);

{etc. and other set manipulation procedures)

FIGURE V-14. Auxiliary procedures needed for
sub-parts query

4. Conclusions.

These examples have been chosen to illustrate some of the

ideas that have been applied to the improvement of interfaces

between data bases and programming languages. The last example

(which is shorter and more transparent than conventional code

for the same purpose) illustrates, perhaps, why an improvement

is needed. There is, of course, endless discussion on what con-

trol structures and what syntax are most appropriate for such

an interface.

The more serious problems, and they are still research

problems, are concerned with data types. In each case cited

above, the inadequacies lay in the generality of the type system

of either the language or the embedded data model. A strongly _9

V-26

. . .r

typed interface is essential. Most errors in complex data base

code are type errors; and in simple (query) languages that are

not type-checked, type errors result in baffling run-time mes-

sages for the end-user.

procedure Sub widgets;
var P: Part; PREF, PREFl: Part ref; LREF: Link ref;

LEVEL, NEXTLEVEL, ALLSUBS: Part-set;

begin
OPEN (Manuf)
LEVEL: -Emptyset;
FINDFA PART(PREF);0
while fREF.FOUND do

begin
GETPART(PREF,P);
if P.Pname = 'WIDGET' then INSERT(PREF, LEVEL);
FINDNAPART(PREF, PREF)

end

ALLSUBS: EMPTYSET; ..-

while NOT(EMPTY(LEVEL)) do
begin

NEXTLEVEL: =Emptyset
while NOT(EMPTYSET(LEVEL)) do

begin
CHOOSE(LEVEL,PREF); REMOVE(PREF,LEVEL);
FINDFS SUP(PREF,LINKREF);
while rINKREF.FOUND do

begin
FINDOS SUB(LINKREF,PREFl);
INSERTTPREF1 ,NEXTLEVEL);
INSERT(PREF1, ALLSUBS);
FINDNS SUP(LINKREF,LINKREF);

end;
end;

LEVEL:=NEXTLEVEL
end;

while NOT EMPTYSET(ALLSUBS) do
begin
CHOOSE (ALLSUBS, PREF); REMOVE (PREF ,ALLSUBS);

IL GET PART(PREF,P);
WRITELN (P. Pname, P.Weight)

end
end;

FIGURE V-15. Pascal-type Codasyl query for all
sub-parts of a widget

V- 27

Future attempts at designing programming language--data

base interface should be judged by the generality and complete-

ness of the type system. It is to be hoped that no one in the 0

-future will design a language that does not support a data base

or a data base management system that is not supported by a

language.

B. DATA BASES AND EXPERT SYSTEMS

1. Introduction

The last few years have seen an increasing commercializa- 0

tion of Artificial Intelligence. The so-called expert systems

that were, for many years, experimental tools or at best pro-

grams that could be of assistance to a few highly-trained

people are now being advertised as general-purpose tools that

can be used in any area that requires substantial problem-

solving capabilities, together with a knowledge base.

To what extent are these claims justified and what will be

the impact, if any, on C 3 , opertations? If a substantial know- 0

ledge base is to be built, will it be possible to use existing
C 3 data bases and applications software or will the data bases

have to be completely restructured? In this section we shall

take an exploratory look at some of these problems and examine -

some of the tools that may be appropriate for integrating data

bases and expert systems.

In spite of all the publicity that has been given to expert

systems in the past year or two, there is still some argument -

as to whether they will prove valuable. Of the various systems

cited here, few to our knowledge are yet in commercial production,

and whether or not the substantial costs that have been incurred

in developing them have yet been justified is still open to -

debate. On the other hand, one or two smaller-s-;ale systems--

computer configurers are an excellent example--are in day-to-

day use and have almost certainly justified their investment.

V-28 "0

Moreover, a large number of so-called "decision support systems"

has been implemented with spectacular results; and the fact

that expert (as opposed to decision support) systems have not

yet borne fruit may be more a matter of classification than of

substance. Before looking at individual systems, a few words

on the classification of systems are in order.

The first observation is that expert systems are, for the

most part, used by experts. In the examples cited, and in all

the others we have seen, the purpose of the system is to capturei

a body of knowledge and to implement complex reasoning or search

mecha nisms that could be understood by the user. In this sense

* an ex~ert system is no different than any other form of computer

aid: it serves to amplify the abilities of an expert in-some

area by representing a larger knowledge base and by carrying out --

computations more efficiently and accurately than the user can.

In the case of expert systems, the knowledge base may be encoded

in a set of rules or in some semantic network, and the computa-

tions are often some form of inferencing that is done on the

basis of those rules or the network._

It is only the flavor of the representation and of the

computations that distinguish expert systems from decision

support systems. The latter usually combine access to data

* base management systems with a set of readily accessible tools

*for the extraction and manipulation of data. Again, a decision

*support system is only useful to an expert, i.e., one who is

- technically knowledgeable in the domain of interest. If there

is any difference in the use of decision support systems and "
expert systems it is that in the former, the computation steps

required to achieve a result are well understood by the user.

In an expert system, the user will understand the principles on

which the computation proceeds but may not know how a specific
result was achieved. For this reason an important part of the

interaction with an expert system is some form of explanation.

It has (surprisingly recently) been realized that, since the

V-29

.9I

J

S

users of expert systems are themselves experts, some form of

explanation of what intermediate hypotheses the system inves-

tigated in order to obtain a given result is needed if the S

system is to be credible and flexible enough for interactive

testing of alternative hypotheses.

2. Some Well-Known Systems

The following review of some of the frequently cited B

systems is taken largely from direct quotations from relevant

papers. They are included here simply for convenience and also

in an effort to answer the basic questions:

* What does the system do?

* Who uses it?

* How widely is it used?

* What language or other tools were used to build it?

3. The INTERNIST System

Internist is a system that aids physicians, usually inter-

nists, in diagnosis of Internal Medicine disorders. It was

developed as a result of extensive study of how physicians

themselves perform this diagnosis. and has proved to be "effec-

tive in sorting out the complexities and rendering a correct

diagnosis in the great majority of clinical cases tested." The

implementation language is INTERLISP together with external files

that serve as data bases'. The use of INTERLISP's "spaghetti

stack" was found to be extremely useful for context management

and backtracking. It is claimed to have an extremely friendly

user interface.

As for the efficacy of the system, the following quote is

taken from Ref. 23:

It became clear on the basis of extensive testing

that many aspects of INTERIST's performance could be

significantly enhanced if it were possible to deal with _

the various component problems and their interrelation-

ships simultaneously. In many cases, especially those

requiring diagnostic consultation, patients can present

V-30

-9--_

K -- : °. -. - : - %- - . -rr..

a number of concurrent clinical problems. While
K certain patterns of co-occurrence of disease are more

likely than others, one cannot exclude the possibility 6

of encountering a dozen or more hitherto unrelated

disease entities in any given patient. A clinician

seeks a unitary cause, if possible, to account for all

observed findings in a patient. This does not neces-

sarily call for the identification of a single disease

entity. A unitary hypothesis can include a number of

distinct entities, which are interrelated via some

pathophysiological (i.e., causal) mechanism. Our first A

approach to computer-based didgnosis (which predates

INTERNIST-I) was oriented toward the identification

of unitary hypotheses. *he main problem with this

precursor system was its inability to deal with real- 6

world clinical problems. The analysis of actual

patient data (as opposed to test cases) frequently led

to the wrong conclusion, even in relatively uncompli-

cated clinical problems. The clinician, unlike the

program, is not misled by a compulsion to search out

unitary hypotheses that can explain all the data. The

clinician exercises judgement in disregarding major

portions of the clinical findings of a case, while

focusing on the problem and/or problems implicit in a

subset of the data. In an effort to emulate the

skilled clinician's capability to partition a clinical

problem into 'obvious' sub-problems that could be -9

considered separately or together at will, we developed

a problem-formation and attention-focusing heuristic

and incorporated this in the system called INTERNIST-I.

Though exceedingly robust and proven effective in A

solving a wide range of difficult clinical problems,

the sequential approach to problem formation and solu-

tion incorporated in the INTERNIST-I is not without
I L

V-31

L6

RD-Ai44 271 C31 (COMMAND CONTROL COMMUNICATIONS AND INTELLIGENCE) 2/
INFORMATION SYSTEMS.. (U) INSTITUTE FOR DEFENSE ANALYSES
ALEXANDRIA VA T C BARTEE ET AL. APR 84 IDA-P-i774

UNCLASSIFIED IDA/HQ-84-28529 MD903-79-C-ee8 F/G 9/2 NL

Eu"'IIIII

KIIII

.4Q

.0 Q

1.8

11 1"L4

MICROCOPY RESOLUTION TEST CHART

mNATON BUREAU 0F STANDARDS-196
3

-
A

:5 n-.332

*1 1111=EM 3

Lp
mao

." " -' " " ".'.". -" I " "*,*. . .

.Id I l " I

shortcomings. Reactions of clinicians who have inter-

acted with the system over the past two years have

pointed to a dissatisfaction with the tendency of the 0

program, in complex cases, to begin its analysis by

considering wholly inappropriate problems, on which

it may spend an inordinate amount of time. This

rarely leads to a false conclusion but it does prolong

the sessions of terminal interaction unnecessarily.

The reasons for this phenomenon relate the system's

inability to perceive the multiplicity of problems in

a case all at once. The design of INTERNIST-I was 0

motivated by the need to formulate and focus attention

on individual components of complex clinical problems.

Experience with this system suggests, however,

that a multi-problem focus and prior attention to the

interrelationships among hypothesized disease entities

might yield patterns of behavior that would appear more

reasonable and acceptable to the clinician users of the

system. This has led to the development if INTERNIST-II,

a system embodying strategies of concurrent problem-

formation. INTERNIST-II employs a hypothesis generator

that uses the concept of constrictor to delineate the

top-level structure of a complex problem, and a modified ..

scoring algorithm that considers within each sub-problem

only those findings judged to be relevant in that con-

text. As of this writing, the heuristic multi-problem

formation and reduction procedures have been implemented

and tested on a large number of cases with resulting

initial problem formulation that surpasses INTERNIST-I

performance in all complex cases. The synthesis pro-

cedure has been incorporated in the system only recently, -

however, and is not currently being exploited to the

full extent anticipated. The intention is to invoke

the synthesis heuristic during the course of state-space

V-32

0

expansion in order to bias sub-problem selection toward

potentially unified constructs. At present, the pro-

cedure is invoked only in ex-post-facto fashion after

all conjunctive problems have been reduced to simpler

form. The system is incomplete in other respects as

well; it has not yet been fitted with the type of inquiry

capability used in INTERNIST-I to test and evaluate

hypotheses. However, we expect that the improved problem

focus of INTERNIST-II can be counted on to provide more :1
discriminating information-gathering capability than was

possible in the predecessor system. What remains to be

seen is the adequacy of the state-space formalism as a

framework within which appropriate reformation of the

problem-set can be recognized and/or developed in those

cases when the initial focus is, at least in part,

incorrect. One of the great strengths of INTERNIST-I is

its ability to shift the focus of attention from one

problem to another on the basis of newly-derived data.

To attain comparable facility in the multiple problem

context of INTERNIST-II will require more elaborate control
strategies, because new evidence will be expected in most

cases to call for alteration of only one component of the

total problem structure. Quite radical restructuring of

the total problem focus may be called for in some cases.

Special control strategies will also have to be devised

for a search mechanism that calls for the conclusion of

the primary form of a disease only after other etiologies

have been excluded. Similar search strategies, involving

directed investigation of the INTERNIST-II state space,
will need to be incorporated in the system in order to

deal with this class of decision problem. There is

also a clearly perceived need for extending the dimen-
sionality of the hierarchy of disease categories so that

V-33

,.°.

additional relationships, not now capable of represen-

tation, may be made available to the diagnostic programs.

This will achieve the full power of the constructor-

based multi-problem generator.

Much of the machinery needed to carry out critical

experiments with respect to the issues discussed above

is already in place, and additional results may be 0

expected in the near future.

4. MYCIN

MYCIN is again a diagnostic system designed to aid physi-

cians. Unlike INTERNIST, the domain of interest is somewhat

smaller, being limited to diagnosis and the treatment of bac-

teremia (bacteria in the blood) and meningitis (bacteria in

the cerebrospinal fluid). Note that the program also provides

aid in the selection of drugs.

Like INTERNIST, a friendly user interface is claim that

involves the generation of English sentences. It is also

written in INTERLISP and involves some 600 rules that deal

with diagnosis and treatment. It is also under development

and involves collaboration with the researchers and a specific

group of physicians that form its current base of users. More

recently the system iias been given the ability to acquire new

rules through inter'ction with the clinical expert. The S _

following assessment of how well the system works is taken

from (Ref. 14).

In order to assess how well the system operates,

one must take into account the design criteria and the

degree to which the system meets them. Among the

concerns of the system developers were the following

questions posed by physicians about a new system:

1. Is its performance reliable?

2. Do I need this system?

3. Is it fast and easy to use?

4. Does it help me without being dogmatic?

V-34

0

5. Does it justify its recommendations so that I

can decide for myself what to do?

6. Does use of the system fit naturally into my 0

daily routine?

7. Is it designed to make me feel comfortable

when I use it?

We have already alluded to the fact that MYCIN is

making strides in acquiring a wider knowledge data base

through the relatively painless method of an expert user

interface and that it does so in simple English. When

the truth of a premise condition is best determined by 6

asking, the physician enters the appropriate response,

and the program continues. The knowledge expressed in

MYCIN rule is seldom definitive, but tends to include

"suggestive" or "strongly suggestive" evidence in favor 0

of a given conclusion. Then, it strives not to be dog-

matic. MYCIN has a clear sense of its limitations.

Although the system has served us well to date, it does

have several recognized inadequacies and can only be S

seen as a first step toward the development of a coher-

ent theory of the management of uncertainty in complex

reasoning domains. Perhaps the greatest advantage of

the rules used in MYCIN is the way in which they facil- -

itate the development of mechanisms for explaining and

justifying system performance. These capabilities also

contribute greatly to MYCIN's educational role. The

explanation program has two options. One is limited in - .

scope, but is fast and easy to use. This option is

more powerful, but it involves language processing and

it is therefore less reliable and more time-consuming.

(MYCIN has a large dictionary, but questions must be -0

kept short, without subordinate clauses. It takes

novice users several sessions before they learn the best

way to phrase questions so that MYCIN will interpret

V-35

them properly). This question/answering capability

is designed to allow full access to all system know-

ledge both static (i.e., facts and rules obtained from

experts) and dynamic (i.e., conclusions reached by the

program for the specific consultation session). An

evaluation of MYCIN's decisionmaking capabilities

leaves many points unclear. First, any evaluation is

difficult because there is so much difference of opinion

in this domain, even among experts. Actual clinical

outcome cannot be used because each patient is treated

in only one way and because a poor outcome in a gravely P

ill patient cannot necessarily be blamed on the treat-
ment chosen. Second, although MYCIN performed at or

near expert level in almost all cases, the evaluating

experts in one study had serious reservations about the 9
clinical utility of the program. It is difficult to

assess how much of this opinion is due to actual inade-

quacies in system knowledge and design and how much is

related to inherent bias (and according to Shortliffe,

physicians are notoriously biased) against any computer- . -

based consultation aid. Finally, MYCIN did not do well
with patients who had serious infections simultaneously .

present at sites in the body about which the program

has been given no rules. A useful antimicrobial con-

sultation system must know about a broad range of

infectious diseases. Thus, the program is not ready

for clinical implementation, and we cannot test its

usefulness or whether or not it is cost-effective.

5. The PROSPECTOR Consultant System

PROSPECTOR is a computer consultant system intended to

aid geologists in evaluating the favorability of an exploration

site or region for occurrences of ore deposit of particular

types. Knowledge about a particular type of ore deposit is

encoded in a computational model representing observable

V-36

L •

. "- l " - l l -

"N ~ ~ ~ ' .Z. ,V7 .M .W

geological features and the relative significance thereof.

. The system is used by geologists exploring the hard-rock

mineral deposit. However, it is intended to use the system in

on-site explorations--especially for the petroleum industry--

by the use of Lisp machines. In this case the users may well

have less expertise than the designers.

A Lisp-based model description language is used and may

well make use of the "subjective Bayesian methods" described in

the following chapter. Since there are serious intentions to

field test the program for commercial purposes, one may assume

that it has been found useful. The following is taken from

Ref. 24.

The system is still in the process of being devel-

oped. PROSPECTOR is intended to emulate the reasoning

process of an experienced exploration geologist in

assessing a given prospect site or region for its like-

lihood of containing an ore deposit of the type repre-

sented by the model he or she designed. The term "model"

refers to a body of knowledge about a particular domain

of expertise that is encoded into the system and on

which the system can act. The empirical knowledge con-

tained in PROSPECTOR consists of a number of such spe-

cially encoded models of certain classes of ore deposits.

The performance of PROSPECTOR depends on the number of
models it contains, the types of deposits modelled, and

the quality and completeness of each model. Because

the PROSPECTOR program is primarily a research project,

its coverage is still incomplete. It currently contains

five prospect-scale models, one region-scale model, and

one drilling site selection model. These models were

selected for a variety of reasons, including their

economic significance, the extent to which they are
well understood scientifically, the availability of

expert geologists who could collaborate with us in the

model development, and the new research issues that

their implementation would raise.

V-37

:,:..:- ' :-_ .:. _ ._: :: : . . :. : .. : : _.. . -:.- .--_

t• . -. .'-

From the same reference, the following may be of value in

assessing the effectiveness of the present system.

In PROSPECTOR's normal interactive consultation

mode, the user is assumed to have obtained some promising

field data and is assumed to desire assistance in

evaluating the prospect. This, the user begins by

providing the program with a list of rocks and minerals

observed, and by inputting other observations expressed

in simple English sentences. The program matches these

data against its models, requests additional information

(in definitive questions) of potential value for arriv- P

ing at more definite conclusions, and provides a summary

of the findings (expressing its conclusions to the user

on a -5 to 5 certainty scale that the user also employs -

to express his certainty about evidence requested by the

system). The user can ask at any time for an elabora-

tion of the intent of a question, or for the geological
rationale for including a question in the model, or for

an on-going trace of the effects of his answers on

PROSPECTOR's conclusions. The intent is to provide the
user with many of the services that could be provided
by giving him telephone access to a panel of senior econo-

mic geologists, each an authority on a particular class o
of ore deposits.

Since the PROSPECTOR system has only been used

experimentally thus far, the only way to gage how well

it works is through performance evaluation techniques

which assess the extent to which the performance of
the model reflects faithfully the intent of the model

designer. The results of these evaluations specify

portions of the model that might benefit from "fine

tuning," and establish priorities for such revisions.

How well any given model will perform is, of course,
dependent upon the model designer, and upon the size,

V-38

the complexity, and how authoritative and up-to-date a

model he has designed. (This last aspect, by the way,

points to the need, especially in the use of scientific .
models, for constant update). The models currently in

use have, as has been pointed out, been specially
chosen, and thus might not prove an adequate measure

of PROSPECTOR's effectiveness. It should, however, be 0

pointed out that each model is encoded as a separate

data structure, independent of the PROSPECTOR system

per so. Thus, the PROSPECTOR program should not be

confused with its models. (These models can always be

tested and improved. The program can be run, and

accidental blunders or bugs can be corrected. In

addition, the program can produce a questionnaire for

the model that is useful in gathering data for subse-

quent testing and revision). Rather, PROSPECTOR

should be thought of as a general mechanism for

delivering relevant expert information about ore

deposits to a user who can supply it with data about .
a particular prospect or region. One general point

about model design--some care must be exercised to

avoid "overfitting" the model to the data. In general,

the goal is to produce a model that can discriminate

different types of deposits .without losing the ability

to generalize, so as to allow for the variations one

would expect in new situations. Achievement of that,

however (as the authors point out), remains as much an

art as a science as yet. More extensive performance

evaluation techniques and results are reported in the

above cited article. There are some advantages to the

model design process. This process challenges the

model designer to articulate, organize, and quantify
his expertise without exception, the economic geolo-

gists who have designed PROSPECTOR models have reported

V-39

,"MOW

the experience aided and sharpened their own thinking

on the subject matter of. the model. Most have remarked

on PROSPECTOR's potential value as an educational tool-- 0

the models in this system contain explicit, detailed

information synthesized from the literature and the
experience of expert explorationists, together with
explanatory text that can be obtained upon request.

Furthermore, a typical consultation session with

PROSPECTOR costs only about $10 at current commercial .

computer rates.

6. DENDRAL and META-DENDRAL P
The Heuristic DENDRAL program is designed to help organic

chemists determine the molecular structure of unknown compounds.

Because of the wealth of data that can be acquired from a mass

spectrometer, an automatic rule-formation program, META-DENDRAL, P
was developed. This acquires new rules in two ways: through

interaction with an expert and through automatic hypothesis

formation. The reason for adopting this strategy is (Ref. 25)

that: --

Because of the difficulty of extracting domain-

specific rules from experts for use by DENDRAL, a more

efficient means of transferring knowledge into the

system was sought. One was the use of interactive

knowledge transfer programs; the other was the use of

automatic theory formation programs. In some areas of

chemistry, there are no experts with enough specific
knowledge to make a high-performance problem-solving -

program--besides which, it is a time-consuming

process. In the absence of this interactive transfer

of knowledge, an effort to build an automatic rule

formation program (called META-DENDRAL) was initiated.
The DENDRAL programs are structured to read their
task-specific knowledge from tables of production

rules and execute the rules in new situations under

rather elaborate control structures. The META-DENDRAL

V-40

S

programs (working with chemists to determine the depen-

dence of mass spectrometric fragmentation on substruc-

tural features) have been constructed to aid in build- 0

ing the knowledge data base (i.e., the tables of rules).

DENDRAL is largely coded in INTERLISP. Parts of the

hypothesis generator, CONGEN, are coded in SAIL and Fortran.

At the time of the original articles on this system, an attempt
was being made to rewrite the code in lower level languages to

make it more efficient and to allow it to run on a greater

variety of machines. It is assumed that this attempt has been

abandoned.0

The following describes the state of use of the system:

CONGEN has attracted a moderately large following
of chemists who consult it for help with structure

elucidation problems. INTSUM (the planning part of
the META-DENDRAL program which collects and summarizes

evidential support), too, is used occasionally by per-

sons collecting and codifying a large number of mass

spectra, With these noted exceptions, the DENDRAL and

META-DENDRAL programs are not used outside the Stanford

University Community and thus they represent only a
successful demonstration of scientific capability.

7. Computer Configurers -

The preceding sections will have indicated the point made

at the outset of this chapter, that expert systems have yet to

be justified commercially. There is one outstanding success in

this development--that of computer configurers. -

Rl is a system that is in day-to-day use for configuring

VAX-11/780 computers. It constructs from customer specifica-
tions and interaction with a representative to specify both the

physical connections and the spatial arrangement of a computer JL

system (Ref. 26). As it is currently implemented, R2 appears to
contain about 3,000-4,000 rules and is implemented in OPS-4, a

production system language whose successor, OPS-5, is discussed

V-4 1

S

0

below. A major problem in the implementation of the system

appears to have been tuning the language to adequate efficiency.

The success of this program requires no further comment .

since its use is widespread. The user interface is a straight-

forward question-and-answer dialog. It is noteworthy that

other manufacturers have achieved similar successes: in parti-

cular, there is a system at Burroughs under development that 0

is implemented in Prolog.

8. Data Bases and Expert Systems

All the systems cited above have a purpose-built data base

or knowledge base. For the most part, these have been construc-

ted by individuals with an extensive knowledge of the subject

matter. It is possible that components of the Rl rule base

could have been generated automatically from the appropriate

inventory files, but this is unlikely to account for a substan-

tial fraction of the knowledge base.

In order to find out whether existing data bases could be

ueed at all in expert systems, we should identify the kinds of

problems for which expert systems might be developed and the

nature of the relevant data bases. We should also investigate

the methods by which factual data can be used in expert systems.

The use of expert systems has been widely discussed with

respect to Command and Control, but in assessing their applica-

bility we should distinguish between decision support systems

and expert systems. The former generally comprise data presen-

tation and analysis techniques and predictive modelling. The

latter usually involves some deductive reasoning system that .

attempts some form of problem-solving. Decision support, espe-

ciallv related to data presentation, has been extremely useful

in Command and Control, but it appears that there are yet no

adequate prototypes of relevant expert systems. There are two

possible reasons for this. One is that the knowledge base is

too large and heterogeneous to be susceptible to existing tech-

niques; note that all the examples cited above had reasonably

V-42

L0 _

* uniform knowledge bases. The other is that it may be difficult

i to produce a system whose response time and reliability is

adequa te.

One of the most demanding functions in Command and Control

is monitoring for occurrence of certain events which are indi-

cated by relatively complicated logical inferences. Although

it is probably too soon to expect useful expert systems to

subsume the whole function of Command and Control, it may well

be that independent, automated agents could be constructed to

perform some of the more sophisticated and time-consuming

monitoring tasks. There are a few proposals for real-time

expert systems and it could be that, with the appropriate user

interface, some of the "expert" monitoring functions could be

automated.

9. The Use of Data Bases .

Expert systems are usually rule-based, the individual

rules describing the deductions that the system is allowed to

make. Conventional data bases can be viewed as a collection

of facts, but no rules. At f*irst sight, the possibility of

using a conventional data base in an expert system may appear

remote. However, there is a sense in which a fact can be

regarded as a simple rule and this has been shown in a number

of deductive systems of which the best known is the Logic -

programming language Prolog.

A Prolog data base consists of a collection of facts and

rules. The stock example is that of a family tree:

father(john, paul). -9 -

mother(mary, paul).

mother(ann, mary).

father(henry, mary).

mother(ann, joe).

father(henry, joe).

father(joe, bill).

mother(ellen, bill).

V-43

A__

sibling(X,Y) :- mother(M,X), mother(M,Y),

father(F,X), father(F,Y)
grandfather(X,Y) -father(X,Z), father(Z,Y).
grandfather(X,Y) :- father(X,Z), mother(Z,Y).

parent(X,Y) :- mother(X,Y).

parent(X,Y) :- father(X,Y).

child(XY) :- parent(Y,X).

ancestor(X,X).

ancestor(X,Y) :- parent (X,Z), ancestor(Z,Y).

The facts in this data base are the statement such as

"father(john,paul)", which is a representation of the fact that

"john is the father of paul". The facts are special cases of

rules, that are of the form <consequent> :- <antecedent>. That

is, the rule

sibling(X,Y) :- mother(M,X), mother(M,Y),

father(F,X), father(F,Y).

reads "X is a sibling of Y if M is mother of X'and M is mother

of Y and F is father of X and F is father of Y". In response

to typing in the

? - question sibling(X,joe).

the Prolog interpreter will attempt to match variables (the

variables are in upper case) in order to prove the assertion

that "There is an X for which X is the sibling of joe". In

this case, the proof succeeds with the X in sibling(X,joe)

matched to mary. Note that the variables are words starting

with an upper-case character.

A more complicated example is the ancestor relationship.

The two rules assert first that X is an ancestor of X, i.e.,

anyone is an ancestor of himself. The second asserts that X

is an ancestor of Z if X if parent of Y and Y is ancestor of Z.

In response to the question ancestor(X,paul), the Prolog inter-

preter will find, on demand, all those instances of X which

V-44

]

make the predicate true. A more general question is ancestor
(XY) in which Prolog will find all instances of X and Y that

||I make the predicate true.

Prolog has a syntax for lists built into it, thus list

I processing predicates may be created in a manner similar to the

way they are constructed in Lisp. To append a list X to a list

Y, for example:

append((] ,X,X).

append([AIX),Y[A12]) :- append(X,Y,Z).

This reads that the empty list 1 appended to X is X and a

list whose head is A and whose tail is X ([AIX]) appended to Y "

is the list whose head is A and whose tail is Z ([A I Z] ,) where

Z is the result of appending X to Y. Note that this will not

only instantiate X to [1,2,3,41 in append([1,2],[3,4],X) but it

will also make the successive instantiations:

X Y

[1 [1,2,3,41
Ill (2,3,41
[1,2] (3,41
[1,2,31 (41
[1,2,3,4] []

in response to append(X,Y,(l,2,3,41). Conventional arithmetic -

is implemented through the use of the pseudo-predicate; thus,

N is 3+4 will bind N to 7. However, 7 is X+Y will fail, i.e.,

it will not produce bindings for X and Y.

Consider, for example, how the function factorial might be --

implemented in Prolog.

factorial(0,1).

factorial(N,M) :- Y is N-l, factorial(Y,Z), M is N*Y.

Given, for example, factorial(4,X), X will first be correctly

bound to 24. However, the attempt to find further solutions will

not stop. The initial solution successively matched factorial

(4,_), factorial(3,_), factorial(2,_), factorial(l,_), and

V-45

* , . , . . *

factorial(O,_). The last of these would have succeeded with

the use of the first clause. In looking for further solutions,

the backtracking mechanism proceeds past this match and corn- S

putes factorial(-l,_), factorial(-2,_), etc. Thus, asking for

another match will cause an endless loop. There are two solu-

tions to this problem: one is to add a condition in the right-

hand side of the second clause that N > > 1. The other is to

add a "cut" to the first clause. This indicates that once the

first predicate has matched, no further backtracking can take

place past this match. It should also be noted that any other

arrangement of the "conditions" on the left-hand side of the

second clause will cause the factorial predicate to fail in

general.

It should be apparent that the collection of facts in a

Prolog data base can be thought of as a relational data base. O

The difference is that the columns of the relation are coded

positionally rather than by tags. Thus, the set of assertions

father(john, paul). -

father(henry, mary). 0

father(henry, joe).

father(joe, bill).

would be held in a relation FATHER(PARENT, CHILD) in which the

ccmponents are defined by labels (PARENT and CHILD) whereas in

Prolog they are held positionally.

For data base work this is more than a minor inconvenience

because relations may, and often do, have tens or even hundreds

of columns. It is awkward to remember these by position. Using _0

labels in a Prolog-like language has recently become a matter

of considerable research interest. There is every expectation

that more sophisticated data models can be integrated with

problem-solving languages and other tools for the construction 3

of expert systems.

For the time being, however, the best methods of integrat-

ing existing data bases with any of these problem-solving

V-46

.0

systems is to provide a clean, interactive, relational inter-

face. Any long responses from the data base will almost cer-

tainly mean that the data base will have to be converted to the 0

appropriate rule base before it can be used.

V- 47

REFERENCES

1. CCITT Standard X.200, Reference Model of Open Systems
Interconnection for CCITT Applications.

2. "Specification for the Interconnection of a Host and an
IMP," Report No. 1822, Bolt, Beranek and Newman Inc.,
Cambridge, MA, revision of December 1981.

3. CCITT Recommendation X.25, "Interface Between Data Terminal
Equipment (DTE) and Data Circuit Terminating Equipment (DCE)
for Terminals Operating in the Packet Mode on Public Data
Networks," International Telegraph and Telephone Consultative
Committee Yellow Book, Vol. VIII.2, Geneva, 1981. -0

4. "Defense Data Network X.25 Host Interface Specification,"
BBN Report No. 5476, Cambridge, MA, December 1983.

5. "Defense Data Network Subscriber Interface Guide," Defense
Communications Agency, Washington, DC, July 1983. .9. .

6. "Internet Protocol Transition Workbook," SRI International,
Menlo Park, CA, March 1982.

7. "Internet Protocol Implementation Guide," SRI International,
Menlo Park, CA, August 1982. --

8. "DDN Subnet Access Protocol Interoperability Study," BBN
Report No. 5360, Cambridge, MA, October 1983.

9. Blankertz, W.H., and D.A. Gombert, "WIS Local Area Network
Issues," Mitre Report MTR-82W00123, July 1982.

10. Shirey, R.W., "FY81 Final Report: Cable Bus Applications
in Command Centers, Security Issues," Mitre Report
MTR-81W00248-02, February 1982.

11. Ware, W. "Security Controls for Computer Systems, Report of
the Defense Science Board Task Force on Computer Security,"
Rand Corporation R-609-1, originally published February
1970, reissued October 1979.

12. Chorafas, D.N., "Designing and Implementing Local Area
Networks," McGraw-Hill, 1984.

R-1

-9--_

13. Sidhu, D.P., and M. Gasser, "Design for a Multilevel Secure
Local Area Network," Mitre Report MTR-8702, March 1982.

14. Institute for Defense Analyses, nC31 Data Base and Net-
working Analysis," IDA Paper P-1637, T.C. Bartee and
O.P. Buneman, April 1982.

15. Institute for Defense Analyses, "C31 Local Area Networks--
An Assessment," IDA Paper P-1715, T.C. Bartee and O.P.
Buneman, June 1983.

16. Van de Riet, R.P., et al. "High Level Language Features
for Improving the Efficiency of a Data Base System," ACM
Trans. on Data Base Systems 6 (3): 1981.

17. Rowe, L.A., Reference Manual for the Programming Language
RIGEL, Technical Report, University of California at
Berkeley, Department of Electrical Engineering, 1980.

18. Buneman, O.P., J.B. Hirchberg and D.J. Root, "A Codasyl
Interface for Pascal and Ada," in Proceedings, British
National Conference on Data Bases, 1982. ..

19. Atkinson, M.P., et al. "An Approach to Persistent
Programming," Computer Journal 26 (4), November 1983.

20. Shipman, D.W., "The Functional Data Model and the Data -
Language DAPLEX," ACM Trans. on Data Base Systems, 6 (1);
140-173, March 1981.

21. Schmidt, J.W., "Some High Level Language Constructs for
Data of Type Relation," ACM Trans. on Data Base Systems,
2 (3): 247-281, September 1977.

22. Smith, J.M., S. Fox and T. Landers, ADAPLEX: Rationale
and Reference Manual, Second Edition, Computer Corporation
of America, Four Cambridge Center, Cambridge, MA, 1983.

23. Pople, H.E., Jr., "The Formation of Composite Hypothesis
in Diagnostic Problem Solving/An Exercise in Synthetic
Reasoning," in Proc. IJACI-5, pp. 1030-1037, IJACI, 1977.

24. Duda, R.O., and J.S. Gaschnig, "Knowledge-Based Expert
Systems of Age," Byte 6 (9): 238-81, 1981.

25. Feigenbaum, E.A., et al. "On Generality and Problem
Solving--A Case Study Involving the DENDRAL Program," in
D. Michie and B. Meltzer (editors), Machine Intelligence
6, Edinburgh University Press, 1971.

26. McDermott, J., RI: A Rule-Based Configurer of Computer Systems,
Technical Report CMU-CS-80-119, Carnegie Mellon University, 1980.

R-2

w A

00

* 0I

vrS

4y 44

S '*4t S

OS 1

S SF

